
New Oracle
Security
Threat

Troy Ligon

Stealth Password
Cracking Vulnerability

Esteban Martinez Fayo – AppSecInc.com

http://arstechnica.com/security/2012/09/oracle-database-stealth-password-cracking-vulnerability/

https://threatpost.com/en_us/blogs/flaw-oracle-logon-protocol-leads-easy-password-cracking-092012

https://threatpost.com/en_us/blogs/flaw-oracle-logon-protocol-leads-easy-password-cracking-092012

So How Would This Work?

1. Get the SALT (available through AUTH_VRF_DATA field)

2. Get the encrypted server session key (available through
AUTH_SESSKEY field)

3. Brute force the AES 192-bit encrypted AUTH_SESSKEY to
determine the SHA-1 password hash

4. Once you have the SALT and the SHA-1 hash value, brute
force the password.

So How Would This Work?

1. Get the SALT (available through AUTH_VRF_DATA field)

2. Get the encrypted server session key (available through
AUTH_SESSKEY field)

3. Brute force the AES 192-bit encrypted AUTH_SESSKEY to
determine the SHA-1 password hash

4. Once you have the SALT and the SHA-1 hash value, brute
force the password.

Flaw Leaks
Unencrypted version of

this Key

So How Would This Work?

1. Get the SALT (available through AUTH_VRF_DATA field)

2. Get the encrypted server session key (available through
AUTH_SESSKEY field)

3. Brute force the AES 192-bit encrypted AUTH_SESSKEY to
determine the SHA-1 password hash

4. Once you have the SALT and the SHA-1 hash value, brute
force the password.

From SALT and a "guessed" password you get a SHA-1 hash. With
that and the leaked Session Key, a brute force SHA-1 crack gives
the decrypt key in about 5 hours for an 8-character password.

So How Would This Work?

1. Get the SALT (available through AUTH_VRF_DATA field)

2. Get the encrypted server session key (available through
AUTH_SESSKEY field)

3. Brute force the AES 192-bit encrypted AUTH_SESSKEY to
determine the SHA-1 password hash

4. Once you have the SALT and the SHA-1 hash value, brute
force the password.

Now 4. is moot, as it is the password that properly decrypted in 3.

5 Hours? Really?

One AMD Radeon HD7970 GPU can
average 8.2 billion password trys/sec

oclHashcat-plus can utilize multiple
GPUs for exponential performance
improvement

Rainbow tables can utilize pre-
calculated values to cut even more time

5 Hours? Really?

Here’s an 8-Radeon card computer for about $12k that can
brute force the entire 8-character namespace

(upper/lower/digit/symbol) in 12 hours!!!

Why is this so Insidious?

Wouldn’t the account get locked due to
too many failed login attempts?

Why is this so Insideous?

Wouldn’t the account get locked due to
too many failed login attempts?

No!
You don’t get locked because once you

grab the AUTH_VRY_DATA and
AUTH_SESSKEY, the rest is offline

activity.

How to Protect Against This?

How to Protect Against This?

Note that this is a flaw in O5LOGON protocol

O5LOGON came out with Oracle 11.1 (client
and server)

How to Protect Against This?

Upgrade to Oracle 12c

- or –

Go back to O3LOGON protocol

How to Go Back to O3LOGON?

alter system set sec_case_sensitive_logon=FALSE scope=BOTH;

orapwd file=pwdSID.ora ignorecase=y

grant sysdba to USER1;

grant sysoper to USER2;

So Now I’m Safe…Right?

So Now I’m Safe…Right?

WRONG!!!

David Litchfield, Accuvant Labs

Demonstrated a flaw that allows authenticated remote users to
execute arbitrary SQL commands via vectors involving CREATE
INDEX with a CTXSYS.CONTEXT INDEXTYPE and
DBMS_STATS.GATHER_TABLE_STATS.

Affects: Oracle 8i thru 11.2.0.3

Fixed: July 2012 CPU

Stealth Password
Cracking Vulnerability

Troy Ligon
tligon@soug.org

