
1

Autonomous Transactio
ns

and Other Useful Tidbits

Troy Ligon
Ligon Solutions

2

What is an
AUTONOMOUS
TRANSACTION

and
Why would I want to use one?

Have you ever found yourself in the situation where you want to commit some statements in a given
transaction while rolling back other statements in that same transaction? Or you want to commit one
particular statement and you’re not sure yet whether you want to commit or roll back the rest of the
statements in that transaction?

Well, you can think of Autonomous Transactions as this sort of “selective commit”.

3

SESSION A

select SEQ.currval,
TROY.txt from dual;

1 A

SEQ=1

TROY.txt=A

SESSION B

select SEQ.currval,
TROY.txt from dual;

1 A

Oracle Sequences

A good example of this is found when we take a look at Oracle Sequences.

Here we see a simple database with sequence SEQ = 1 and

table Troy column Txt = A

Both Session A and Session B see SEQ=1 and TXT=A

4

SESSION A

update TROY
set txt=B;

select SEQ.currval,
TROY.txt from dual;

1 B

SEQ=1

TROY.txt=B

SESSION B

select SEQ.currval,
TROY.txt from dual;

1 A

Oracle Sequences

If Session A sets Troy.TXT = B, Session A will see the change, but Session B, of course, won’t because
the change hasn’t been committed yet.

5

SESSION A

select SEQ.nextval,
TROY.txt from dual;

2 B

SEQ=2

TROY.txt=B

SESSION B

select SEQ.currval,
TROY.txt from dual;

2 A

Oracle Sequences

Anytime one session selects nextval from a sequence, the incremented value needs to be committed
immediately so any other sessions will get the incremented value.

We see here Session A selecting nextval from the sequence, and both Session A and Session B
immediately see SEQ=2

Note that Session B still doesn’t see the update to TROY.txt because the sequence update was an
autonomous transaction.

6

SESSION A

rollback;
select SEQ.currval,
TROY.txt from dual;

2 A

SEQ=2

TROY.txt=A

SESSION B

select SEQ.currval,
TROY.txt from dual;

2 A

Oracle Sequences

In fact, Session B might never see that change to TROY.TXT, because Session A might issue a
ROLLBACK.

But as you can see here, the ROLLBACK doesn’t effect the sequence. In fact, for many years, Oracle has
used a lot of this type of functionality internally to update system resources and the like. You’ve probably
seen them referred to as “recursive transactions” but they never really gave you a way to create your own
recursive transactions.

7

How does this
Help me ?

I know what you’re thinking…”That’s an interesting bit of trivia, Troy, but how does this help me?”

8

Oracle 8i to the
rescue!

With the introduction of Autonomous Transactions in Oracle 8i, this type of functionality was finally
opened up for our use. While it has been around for a long time now, it is such a useful, yet little known
trick, that I thought I would present it to you here today. At the end of this presentation, I won't say that
you'll be autonomous transaction experts, but you will have a concrete example that you should be able to
take back with you and make immediate use of.

9

input

Parse
Record

update tbl A
update tbl B
update tbl C

Good

Read a Record

Commit

insert into
errorlog

Simple Example

Rollback

YES

NO

Here’s a simple example that demonstrates the use of Autonomous Transactions. It’s a typical transaction
processing scenario:

Records are sitting in an INPUT table.

We need to parse each input record and update several other tables (A, B, & C)

As we process each input record, we check for errors.

If we find an error, we want to log that to our error table, rollback all of the changes for that record, and
move on to the next INPUT record.

This insert into errorlog is what we need to be autonomous so the following rollback won’t get rid of the
errorlog record that we just inserted.

10

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

The code for previous example would be something like the following…and I hope you’ll forgive me if
you can immediately see other ways to accomplish this…

this is admittedly a contrived example just to show the Autonomous Transaction functionality.

11

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

We start off by declaring a cursor to read the input table and a corresponding variable to hold the current
row.

12

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

I’ve used a cursor FOR loop to step thru the input cursor.

13

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

For each input record, I call update procedures to perform whatever database updates are needed.

I’ve omitted the details of these update procedures as well as the following input_is_bad() function as
they’re not relevant to this discussion.

14

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

If the function decides the record is good then a commit is issued.

15

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

Otherwise the write_errorlog procedure is called.

16

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

The trick is all in the “PRAGMA AUTONOMOUS_TRANSACTION” declaration on the procedure.

When Oracle sees this pragma, it suspends the previous transaction and starts a new transaction for this
procedure.

17

DECLARE
CURSOR input_cur IS SELECT * FROM input_tbl;
input_row input_cur%ROWTYPE;

PROCEDURE write_errorlog(message varchar2) IS
PRAGMA AUTONOMOUS_TRANSACTION;

BEGIN
INSERT INTO errorlog_tbl VALUES(err_seq.nextval,message);
COMMIT;

END;
BEGIN

FOR input_row IN input_cur LOOP
update_table_A(input_row);
update_table_B(input_row);
update_table_C(input_row);
IF input_is_good() THEN

COMMIT;
ELSE

write_errorlog(‘bad record=‘||input_row.key);
ROLLBACK;

END IF;
END LOOP;

END;

Simple Example

When this procedure ends, it returns us to the previous transaction, which I then rollback.

But since the insert into errorlog was autonomous, it survives while all other changes are rolled back.

You can review your errorlog at this point with a simple “select * from errorlog_tbl order by 1;”.

By issuing a “truncate errorlog_tbl;” you will be ready for the next test run of your procedure.

18

Do you ever get those
calls from your

customer where they
say:

“How’s the database
looking ?”

19

“Round and kinda can-like
on my screen, how’s it

looking on yours?”

DATABASE

I like to respond with something along these lines, just to set the tone. You give me a silly question,
you’re likely to get a silly answer. Of course what they are really asking is “Does it look like the database
is performing properly or is it having any problems?” As in performance problems most often.

20

If I really want to know for sure, I fire up my trusty Quest Spotlight....but this takes a lot of time to get
connected and up and running. Often times this is overkill. It’s Oracle, so the database is never the
problem, right? So what I really need is just a quick perk check.

21

So a quicker option is to fire up a putty session to login to the Unix box and do a “top” command. This is
great for what it is....lots of information on what’s going on right now. But it doesn’t address the question
“is this normal for this environment?” If you’re managing one or two boxes, maybe you’ll know, but if
you have hundreds of boxes, it’s a much harder question. What you really need is some trend data.

22

How do I
Monitor Unix Servers?

What Percent CPU & Memory?
How many DB Sessions?

So here’s the bigger question

23

==> vmstat 1 10
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr m0 m1 m2 m1 in sy cs us sy id
0 1 0 49808048 19958704 464 663 48 4 3 0 0 0 0 0 0 1406 2287 2458 10 6 85
0 0 0 49984544 19837576 1918 17242 0 0 0 0 0 0 0 0 0 2066 34780 4795 16 12 72
0 0 0 49984544 19837576 1541 11336 16 0 0 0 0 0 0 0 0 2755 36918 5316 15 7 78
0 0 0 49984688 19837576 643 4050 8 0 0 0 0 0 0 0 0 1457 12475 3206 14 2 84
0 0 0 49984624 19837552 1670 6965 8 0 0 0 0 0 0 0 0 1345 18347 3075 17 3 80
0 0 0 49982136 19833632 1665 5956 8 0 0 0 0 0 0 0 0 2122 21883 4028 18 2 80
0 0 0 49984624 19837552 299 2598 8 0 0 0 0 0 0 0 0 1255 8268 2387 13 2 86
0 0 0 49984624 19837552 307 2787 8 0 0 0 0 0 0 0 0 2308 18512 2930 16 5 79
0 0 0 49980272 19836488 302 2727 8 0 0 0 0 0 0 0 0 2015 20505 3101 20 4 76
0 1 0 49977400 19835472 364 3195 8 8 0 0 0 0 0 0 0 1857 27979 3541 22 2 76

Unix command-line

vmstat gives cpu and memory...but it’s kind of tedious to decode....the columns aren’t lined up with the
headers, etc.

24

==> vmstat 1 2|tail -1|awk '{printf "CPUu=%3s CPUs=%3s CPUi=%4s Mswp=%9s
Mfre=%9s PRC=%s\n",$20,$21,$22,$4,$5,$1}‘

Unix command-line

CPUu= 25 CPUs= 16 CPUi= 59 Mswp= 49964792 Mfre= 19792144 PRC=0

throw in a bit of formatting via AWK and we have pretty passable output

25

==> ps -ef|grep LOCAL
oracle 4411 1 0 Jul 20 ? 0:00 oracleraus01pr1 (LOCAL=NO)
oracle 23149 24707 0 Jul 16 ? 17:47 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 29839 1 0 Jul 20 ? 0:08 oracleraus01pr1 (LOCAL=NO)
oracle 12533 1 13 13:15:51 ? 1301:30 oracleraus01pr1 (LOCAL=NO)
oracle 18579 1 0 Jul 20 ? 0:05 oracleraus01pr1 (LOCAL=NO)
oracle 22264 1 0 May 30 ? 0:15 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 21716 24707 0 Jul 16 ? 16:00 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 21881 1 0 May 30 ? 0:15 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 15132 14931 0 Jul 14 ? 26:34 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))
oracle 19903 15900 0 11:27:08 pts/3 0:00 grep LOCAL
oracle 29836 1 0 Jul 20 ? 0:11 oracleraus01pr1 (LOCAL=NO)
oracle 23384 24707 0 Jul 16 ? 18:44 oracleraus01pr1

(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

Unix command-line

Now for the session count...the process status command lists all the processes and grep LOCAL will filter
for just the oracle session processes ... but you were really just looking for the count so you pipe this to
WC –L to count the lines of output...and note you also got a line for your GREP so you’d want to either
subtract one or GREP –V to get rid of that.

26

==> ps -ef|grep oracle|grep LOCAL|grep -v grep|wc -l
50

Unix command-line

so rolling all that together, something like this is what you’re really after.....add a bit of AWK formatting
and you get:

27

ps -ef|grep oracle|grep LOCAL|grep -v grep|wc -l|awk '{printf "SESS=%5s ",$1}'

Unix command-line

SESS= 50

all of this is very doable, but if I’m doing it by hand, it’s a lot of typing...and a lot of typo’s if you’re like
me...and we started out wanting a quick and easy solution that is faster than firing up Spotlight....or
available to those of you who haven’t talked their company’s finance officer into springing for the cost of
Spotlight....

28

date '+%H:%M'|awk '{printf "%s ",$1}' ;ps -ef|grep
oracle|grep LOCAL|grep -v grep|wc -l|awk '{printf
"SESS=%5s ",$1}' ;vmstat 1 2|tail -1|awk '{printf
"CPUu=%3s CPUs=%3s CPUi=%4s Mswp=%9s Mfre=%9s
PRC=%s\n",$20,$21,$22,$4,$5,$1}'

twl_monitor.sh

12:50 SESS= 50 CPUu= 17 CPUs= 10 CPUi= 73 Mswp= 49985320 Mfre= 19795416 PRC=0

Enter twl_monitor.sh.... I found myself doing this over and over so I just put all of it in a little one line
script so all I needed to do was login to the box and run it. I added a timestamp as well, because a
common question was “when was this?”.....very handy, but it still didn’t answer the question “is this
normal for this box?”

29

PATH=/usr/ccs/bin:/usr/sbin:/opt/bin:/usr/bin/:/var:/usr/local/bin:/usr/ucb
export PATH
cd `dirname $0`
host=`hostname`
dat=`date +%Y-%m-%d`
date '+%H:%M'|awk '{printf "%s ",$1}' >>
/opt/app/oracle/logs/twl_monitor.$host.$dat.log
ps -ef|grep oracle|grep LOCAL|grep -v grep|wc -l|awk '{printf "SESS=%5s ",$1}'
>> /opt/app/oracle/logs/twl_monitor.$host.$dat.log
vmstat 1 2|tail -1|awk '{printf "CPUu=%3s CPUs=%3s CPUi=%4s Mswp=%9s
Mfre=%9s PRC=%s\n",$20,$21,$22,$4,$5,$1}' >>
/opt/app/oracle/logs/twl_monitor.$host.$dat.log

twl_monitor.sh

#
monitoring:
00,10,20,30,40,50 * * * * /opt/app/oracle/scripts/twl_monitor.sh 2>&1 >/dev/null

So I added a bit of code to redirect the output to a file and just append to that every time I ran it. That
way I could look at the file and see what the previous runs had said and know whether this was normal or
not. It then occurred to me that I could just put it in the cron to run every 10 minutes and I’d have a full
dataset. By including the date in the filename, it would automagically give me one file per day with
24hours of data in each one.

30

==> ls –altr
-rw-r--r-- 1 oracle dba 11664 Jul 20 23:50 twl_monitor.uxshpr03.2009-07-20.log
-rw-r--r-- 1 oracle dba 11664 Jul 21 23:50 twl_monitor.uxshpr03.2009-07-21.log
-rw-r--r-- 1 oracle dba 11664 Jul 22 23:50 twl_monitor.uxshpr03.2009-07-22.log
-rw-r--r-- 1 oracle dba 6318 Jul 23 12:50 twl_monitor.uxshpr03.2009-07-23.log

twl_monitor.sh

==> cat twl_monitor.uxshpr03.2009-07-23.log
00:00 SESS= 56 CPUu= 33 CPUs= 30 CPUi= 38 Mswp= 49423384 Mfre= 19598392 PRC=1
00:10 SESS= 50 CPUu= 15 CPUs= 8 CPUi= 77 Mswp= 49935024 Mfre= 20142760 PRC=0
00:20 SESS= 50 CPUu= 17 CPUs= 4 CPUi= 79 Mswp= 49935472 Mfre= 20148520 PRC=0
00:30 SESS= 56 CPUu= 15 CPUs= 7 CPUi= 78 Mswp= 49583088 Mfre= 20026368 PRC=0
00:40 SESS= 56 CPUu= 23 CPUs= 3 CPUi= 74 Mswp= 49433688 Mfre= 19871696 PRC=0
00:50 SESS= 56 CPUu= 15 CPUs= 5 CPUi= 80 Mswp= 49526160 Mfre= 19923608 PRC=0
01:00 SESS= 57 CPUu= 13 CPUs= 2 CPUi= 85 Mswp= 49824344 Mfre= 20055040 PRC=0
01:10 SESS= 57 CPUu= 13 CPUs= 5 CPUi= 82 Mswp= 49839536 Mfre= 20058848 PRC=0
01:20 SESS= 57 CPUu= 13 CPUs= 2 CPUi= 86 Mswp= 49840024 Mfre= 20093912 PRC=0
01:30 SESS= 57 CPUu= 13 CPUs= 2 CPUi= 85 Mswp= 49840328 Mfre= 20090160 PRC=0
01:40 SESS= 57 CPUu= 13 CPUs= 2 CPUi= 84 Mswp= 49841152 Mfre= 20083824 PRC=0
01:50 SESS= 57 CPUu= 13 CPUs= 3 CPUi= 84 Mswp= 49842064 Mfre= 20080648 PRC=0
02:00 SESS= 57 CPUu= 13 CPUs= 3 CPUi= 84 Mswp= 49837304 Mfre= 20072264 PRC=0

This was great. Now I had a directory on the server where I could go and just cat the latest file to see
what today’s trend was. Or any of the older files to see what it was like last week, last month, whenever.

31

command-line parameter is email address to receive report
#
PATH=/usr/ccs/bin:/usr/sbin:/opt/bin:/usr/bin/:/var:/usr/local/bin:/usr/ucb
export PATH
cd `dirname $0`
host=`hostname`
dat=`date +%Y-%m-%d`
wait till after midnight so file is no longer being updated
sleep 180
cat /opt/app/oracle/logs/twl_monitor.$host.$dat.log | /usr/bin/mailx -v -s
"twl_monitor Stats for $host on $dat" $1

twl_monitor_mail.sh

#
email monitoring logs
58 23 * * * /opt/app/oracle/scripts/twl_monitor_mail_attach.sh troy@ligonweb.com 2>&1 >/dev/null

Next I got too lazy to even login to the Unix box, so I made it email it to me each night. Date math is
tricky in a shell script os I used a clever trick of doing it 2 minutes before midnight to capture the DATE
and sleep 3 minutes so you get a full file without having to calculate yesterday’s date. Note $1 is the
email address on the command-line. Even lazier, I can include the customer’s email (comma separated)
and the phone call doesn’t even occur. It becomes a customer self-service activity. And the only thing
they need to be able to do is read their email....

32

command-line parameter is email address to receive report
#
PATH=/usr/ccs/bin:/usr/sbin:/opt/bin:/usr/bin/:/var:/usr/local/bin:/usr/ucb
export PATH
cd `dirname $0`
host=`hostname`
dat=`date +%Y-%m-%d`
wait till after midnight so file is no longer being updated
sleep 180
/usr/bin/mailx -v -s "twl_monitor Stats for $host on $dat" $1 <<EOF
~<!uuencode /opt/app/oracle/logs/twl_monitor.$host.$dat.log
/opt/app/oracle/logs/twl_monitor.$host.$dat.txt
~.
EOF

twl_monitor_mail_attach.sh

Here’s another version that makes it a text attachment instead of being just the body of the email.

33

What is the Most Useful Item
I’ve recently stumbled across in

the Data Dictionary?

34

DBA_HIST_SYSMETRIC_SUMMARY

I was working on an enhancement to a script I’ve written that drives off of the AWR data and was poking
around in the Data Dictionary looking for a specific piece of data. In my browsing, I happened to take a
look at this view and was floored.

35

Name Null? Type
--- -------- ------------
SNAP_ID NOT NULL NUMBER
DBID NOT NULL NUMBER
INSTANCE_NUMBER NOT NULL NUMBER
BEGIN_TIME NOT NULL DATE
END_TIME NOT NULL DATE
INTSIZE NOT NULL NUMBER
GROUP_ID NOT NULL NUMBER
METRIC_ID NOT NULL NUMBER
METRIC_NAME NOT NULL VARCHAR2(64)
METRIC_UNIT NOT NULL VARCHAR2(64)
NUM_INTERVAL NOT NULL NUMBER
MINVAL NOT NULL NUMBER
MAXVAL NOT NULL NUMBER
AVERAGE NOT NULL NUMBER
STANDARD_DEVIATION NOT NULL NUMBER

dba_hist_sysmetric_summary

This view provides aggregated data for a variety of system and database metrics. It has pre-calculated
Minimum, Maximum, and Average values and even includes the Standard Deviation and number of
samples

36

select count(distinct metric_name) from dba_hist_sysmetric_summary order by 1;

COUNT(DISTINCTMETRIC_NAME)

135

dba_hist_sysmetric_summary

Current Logons Count
Host CPU Utilization (%)
Database CPU Time Ratio
Database Wait Time Ratio
Process Limit %
Logical Reads Per Sec
Network Traffic Volume Per Sec
Physical Read Total Bytes Per Sec
Physical Read Total IO Requests Per Sec
Physical Reads Per Sec
Physical Write Total Bytes Per Sec
Physical Write Total IO Requests Per Sec
Physical Writes Per Sec

It has 135 different metrics summarized for you in 10.2. Here are some of the ones most interesting to
me.

37

set pagesize 9999
set linesize 1000 trimsp on
col dbname format a10 heading 'DBNAME'
col timestamp format a16
col snap_id format 999999 heading 'SNAPID'
col instance_number format 99 heading 'NODE'
col ses1 format 9999
col ses2 format 9999
col ses3 format 9999
col ses4 format 9999
col cpu1 format 9999
col cpu2 format 9999
col cpu3 format 9999
col cpu4 format 9999
col dbwait1 format 9999
col dbwait2 format 9999
col dbwait3 format 9999
col dbwait4 format 9999
col dbcpu1 format 9999
col dbcpu2 format 9999
col dbcpu3 format 9999
col dbcpu4 format 9999

dba_hist_sysmetric_summary

set up column formatting

38

select distinct b.value dbname, to_char(a.begin_time,'YYYY-MM-DD HH24:MI') timestamp,a.snap_id
,(select average from dba_hist_sysmetric_summary where instance_number=1 and

metric_name='Current Logons Count' and snap_id=a.snap_id and dbid=a.dbid) ses1
,(select average from dba_hist_sysmetric_summary where instance_number=1 and
metric_name='Host CPU Utilization (%)' and snap_id=a.snap_id and dbid=a.dbid) cpu1
,(select average from dba_hist_sysmetric_summary where instance_number=1 and
metric_name='Database Wait Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbwait1
,(select average from dba_hist_sysmetric_summary where instance_number=1 and
metric_name='Database CPU Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbcpu1
from dba_hist_sysmetric_summary a,dba_hist_parameter b
where a.instance_number=1
and a.snap_id=b.snap_id
and a.dbid=b.dbid
and b.parameter_name='db_name'
and a.snap_id > ((select max(snap_id) from dba_hist_snapshot where dbid=a.dbid)-(24*30))
order by a.snap_id;

dba_hist_sysmetric_summary

give me the last 30 days sessions counts, cpu, dbwaits, and dbcpu from node 1 of the RAC

39

DBNAME TIMESTAMP SNAPID SES1 CPU1 DBWAIT1 DBCPU1
---------- ---------------- ------- ----- ----- ------- ------
raus01pr 2009-06-23 13:02 24777 118 8 22 78
raus01pr 2009-06-23 14:01 24778 114 11 48 52
raus01pr 2009-06-23 15:01 24779 122 13 51 49
raus01pr 2009-06-23 16:01 24780 122 24 48 52
raus01pr 2009-06-23 17:01 24781 116 21 28 72
raus01pr 2009-06-23 18:02 24782 109 14 28 72
raus01pr 2009-06-23 19:01 24783 107 14 25 75
raus01pr 2009-06-23 20:01 24784 114 12 26 74
raus01pr 2009-06-23 21:02 24785 114 9 24 76
raus01pr 2009-06-23 22:02 24786 112 9 19 81
raus01pr 2009-06-23 23:01 24787 112 13 69 31
raus01pr 2009-06-24 00:01 24788 118 12 37 63
raus01pr 2009-06-24 01:02 24789 119 12 68 32
raus01pr 2009-06-24 02:01 24790 109 13 69 31
raus01pr 2009-06-24 03:02 24791 117 12 40 60
raus01pr 2009-06-24 04:01 24792 121 11 46 54
raus01pr 2009-06-24 05:01 24793 123 8 33 67
.....

dba_hist_sysmetric_summary

give me the last 30 days sessions counts, cpu, dbwaits, and dbcpu from node 1 of the RAC

40

set pagesize 9999
set linesize 1000 trimsp on
col dbname format a10 heading 'DBNAME'
col timestamp format a16
col snap_id format 999999 heading 'SNAPID'
col instance_number format 99 heading 'NODE'
col ses1 format 9999
col ses2 format 9999
col ses3 format 9999
col ses4 format 9999
col cpu1 format 9999
col cpu2 format 9999
col cpu3 format 9999
col cpu4 format 9999
col dbwait1 format 9999
col dbwait2 format 9999
col dbwait3 format 9999
col dbwait4 format 9999
col dbcpu1 format 9999
col dbcpu2 format 9999
col dbcpu3 format 9999
col dbcpu4 format 9999

dba_hist_sysmetric_summary

so I’m sure some of you are wondering why I set up column formatting four times for each
column....because I have a 4 node RAC

41

select distinct b.value dbname, to_char(a.begin_time,'YYYY-MM-DD HH24:MI') timestamp,a.snap_id
,(select average from dba_hist_sysmetric_summary where instance_number=1 and

metric_name='Current Logons Count' and snap_id=a.snap_id and dbid=a.dbid) ses1
,(select average from dba_hist_sysmetric_summary where instance_number=2 and

metric_name='Current Logons Count' and snap_id=a.snap_id and dbid=a.dbid) ses2
,(select average from dba_hist_sysmetric_summary where instance_number=3 and

metric_name='Current Logons Count' and snap_id=a.snap_id and dbid=a.dbid) ses3
,(select average from dba_hist_sysmetric_summary where instance_number=4 and

metric_name='Current Logons Count' and snap_id=a.snap_id and dbid=a.dbid) ses4
,(select average from dba_hist_sysmetric_summary where instance_number=1 and

metric_name='Host CPU Utilization (%)' and snap_id=a.snap_id and dbid=a.dbid) cpu1
,(select average from dba_hist_sysmetric_summary where instance_number=2 and

metric_name='Host CPU Utilization (%)' and snap_id=a.snap_id and dbid=a.dbid) cpu2
,(select average from dba_hist_sysmetric_summary where instance_number=3 and

metric_name='Host CPU Utilization (%)' and snap_id=a.snap_id and dbid=a.dbid) cpu3
,(select average from dba_hist_sysmetric_summary where instance_number=4 and

metric_name='Host CPU Utilization (%)' and snap_id=a.snap_id and dbid=a.dbid) cpu4

dba_hist_sysmetric_summary

Here I came up with a very scalable format for the sql statement. This makes it easy to
add/remove/reorder various metrics totally independent of the rest of the sql.

42

,(select average from dba_hist_sysmetric_summary where instance_number=1 and
metric_name='Database Wait Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbwait1
,(select average from dba_hist_sysmetric_summary where instance_number=2 and

metric_name='Database Wait Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbwait2
,(select average from dba_hist_sysmetric_summary where instance_number=3 and

metric_name='Database Wait Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbwait3
,(select average from dba_hist_sysmetric_summary where instance_number=4 and

metric_name='Database Wait Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbwait4
,(select average from dba_hist_sysmetric_summary where instance_number=1 and

metric_name='Database CPU Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbcpu1
,(select average from dba_hist_sysmetric_summary where instance_number=2 and

metric_name='Database CPU Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbcpu2
,(select average from dba_hist_sysmetric_summary where instance_number=3 and

metric_name='Database CPU Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbcpu3
,(select average from dba_hist_sysmetric_summary where instance_number=4 and

metric_name='Database CPU Time Ratio' and snap_id=a.snap_id and dbid=a.dbid) dbcpu4
from dba_hist_sysmetric_summary a,dba_hist_parameter b
where a.instance_number=1
and a.snap_id=b.snap_id
and a.dbid=b.dbid
and b.parameter_name='db_name'
and a.snap_id > ((select max(snap_id) from dba_hist_snapshot where dbid=a.dbid)-(24*30))
order by a.snap_id;

dba_hist_sysmetric_summary

43

DBNAME TIMESTAMP SNAPID SES1 SES2 SES3 SES4 CPU1 CPU2 CPU3 CPU4
DBWAIT1 DBWAIT2 DBWAIT3 DBWAIT4 DBCPU1 DBCPU2 DBCPU3 DBCPU4
---------- ---------------- ------- ----- ----- ----- ----- ----- ----- ----- ----- --
----- ------- ------- ------- ------ ------ ------ ------
raus01pr 2009-06-23 13:02 24777 118 46 90 55 8 20 5 17
22 0 22 30 78 100 78 70
raus01pr 2009-06-23 14:01 24778 114 47 97 56 11 20 11 18
48 5 39 33 52 95 61 67
raus01pr 2009-06-23 15:01 24779 122 63 117 74 13 26 20 24
51 65 83 77 49 35 17 23
raus01pr 2009-06-23 16:01 24780 122 55 104 67 24 24 19 24
48 34 58 55 52 66 42 45
raus01pr 2009-06-23 17:01 24781 116 46 144 57 21 20 13 22
28 3 45 32 72 97 55 68
raus01pr 2009-06-23 18:02 24782 109 46 82 55 14 20 12 22
28 1 27 32 72 99 73 68
raus01pr 2009-06-23 19:01 24783 107 45 81 54 14 20 11 21
25 0 32 32 75 100 68 68
raus01pr 2009-06-23 20:01 24784 114 48 91 56 12 22 9 19
26 5 32 31 74 95 68 69
raus01pr 2009-06-23 21:02 24785 114 46 84 55 9 24 10 17
24 4 31 31 76 96 69 69
raus01pr 2009-06-23 22:02 24786 112 46 77 56 9 11 14 17
19 38 30 30 81 62 70 70
raus01pr 2009-06-23 23:01 24787 112 47 80 52 13 8 6 18
69 28 34 30 31 72 66 70
.....

dba_hist_sysmetric_summary

give me session counts, cpu, dbwaits, and dbcpu from all four nodes of the RAC, all on one line to
facilitate graphing via Excel

44

Questio
ns ?

http
://t

echnet.o
racle.com

Troy Ligon
tligon@soug.org

www.soug.net

Autonomous Transactions are as simple as that. I’d be happy to try and answer any questions that you might have. If there is something that I can’t answer, I’d
recommend that font of all Oracle knowledge, TechNet.

