Wait-Time Based Oracle
Performance Management

Dallas Deeds
Nationwide

Nationwide’
=4 On Your Side

= DBA for Nationwide Insurance for 12 years

= Specializing in performance optimization using
Oracle Wait Interface and OS utilities since
2001

= Responsible for performance of 650 Oracle
databases at Nationwide

The shop

8 Production DBAs

650 Oracle databases (and growing)
sizes ranging from 1 GB to 6 TB

Primarily on Solaris machines
A sprinkling of HP, AIX, Linux

Primarily frame storage

= Wait-Based Strategies and Tools

= (Case Study One: Hot Block Issue

= (Case Study Two: Full Table Scans

= (Case Study Three: Inefficient Indexes
= Case Study Four: CBC Latching

] Q&A

Working the Right Problems?

= After spending an agonizing week tuning
Oracle to minimize I/O operations,
management typically rewards you with:

A.
B.
e C.
D.
E.

An all expense paid vacation
A free lunch

Crumbs from the kitchen
Reward? Nobody even noticed!

You slacker DBA! Don’t you ever do any work?

Why Does This Happen?

" Many tools measure system health |
u Assumption: If I make the database CPU uzed by this session 2,317,384

CPU used when call started 31T, 378

h | h b f' CR blocks created 36,901
ea t y, users ene It DEWR checkpoint buffers written 101, 603
DEWR checkpoints 36

. S DEWR transaction table writes 1,046
DEWR undo block t 44,953

ym ptoms SQL“N:Z :Dun;:m;]:ltz,‘s’frum client 18,550:671

. n . " . . active txn count during cleanout 38,735

* DBA finds "big” problem and fixes it, users ro i ’

. hackground timeouts T 254

report no Impact branch node splits 7

buffer is not pinned count 76, 660,485

. . - buffer is pinned count 94,826, 641

[] L t f d t t d th g t f t hyt d SQL*Met f 1,109,33z2,214
ots of data to review and things to fix, no SramL s

- - 1lls t & hot ki 49,751,137

sure which to do first calls o kemgas 4s2,27

calls to kemges 15,037
change write time 15,859

e Unclear view of performance leads to cleenout - mber of Keuger calls
Finger-pointing

It's your
Database!

It's your Code!

Developer or

f\g_;: {':;"2/@ vendor

IT staff

Confio Performance Intelligence

" Three Key Principles
1. SQL View: All statistics at SQL statement level

2. Full View: Separately measure every resource
(Oracle wait events) to isolate source of problems

3. Time View: Measure Time, not number of times
a resource is utilized

Focus on User Response Time

il i

Identify each bottleneck affecting the user
Rank bottlenecks by user impact

Set correct expectations on impact of fix
Implement proven suggestions

Show proof the fix helped users

SQL View Principle

. Accounting . Development @ Warehouse
- 4 L i i.
B (T
CONVENTIONAL NEW APPROACH
Measuring Entire Company Measuring Individual Jobs

= Example: 'CEO’ measuring ‘employee’ output

= Averaging over entire company gives no useful data

= Must measure each job separately

= DBA must manage database similarly

= Measure and identify bottlenecks for each SQL independently

10

Time View Principle

Time View

Lines of code: Coding Printing Test
10 n time time time

Pages printed:
Test results:
PASS

CONVENTIONAL NEW APPROACH
Measuring System Counters Measuring Time

Example: ‘CEQ’ counting ‘tasks’ vs. ‘time to complete’
Counting system statistics not meaningful
Must measure Time to complete

System stats (buffer size, hit ratios, I/O counts) do not identify
where database customers are waiting

Identify and optimize Wait Time for each SQL to optimize
response time

11

Full View Principle

Full View

R N
Tﬁ N o Lﬁm’.

NEW APPROACH Direct Visibility
= Example: ‘CEO’ measuring results with blind spot hiding key
processes
= Without direct visibility, valuable info is lost
= Must have visibility to every process step

® Identify and measure each Oracle resource for each distinct SQL

Compliant Performance Tool Types

Two Primary Types of Tools

= Session Specific Tools

e Tools that focus on one session at a time by profiling 10046
trace data obtained by tracing the process

J Examlples: Hotsos Profiler, OraSRP Profiler (open source),
tkpro

= Continuous DB Wide Monitoring Tools
e Tools that focus on all sessions by sampling Oracle
o Examples: Confio Ignite, Precise i3

= Both tools have a place in the organization

12

Tracing

= Proper targeting and scoping for required for
best results
e 95 out of 100 users are running well

e 5 out of 100 have spent 99% of time waiting for
locked rows

o If you trace one of the 95" sessions

— No locking problems at all

— May spend time trying to optimize the wrong thing
o If you trace one of the “5"” sessions

— Severe locking problems

— Appears that you could fix the locking problems and reduce user
response time by 99%

13

Tracing - Scoping

" Proper scoping of user actions is required to
get the best data

e Stop and start tracing to collect trace data for only
the user actions you are interested in

e Start trace when Bob mashes the ‘enter’ key
o Stop trace when Bob'’s results paint on the screen

e Otherwise you will introduce irrelevant data
— SQL*Net messaging
— User actions that are not part of the problem
— Response time gets attributed to the wrong things

14

Tracing (cont)

= Advantages

e Very precise — accurate to the microsecond level
(depending on platform)

e The only way to get certain performance data
e Bind values are available
e Provides detailed analysis even deeper than wait
events
= Disadvantages

e Only works if a known problem is going to occur in
the future or if the problem is repeatable

e Difficult to see trends over time

15

Profiled trace data

1.1. Profile by Subroutine

The following table shows the decompoesition of total task response time by internal subroutine.

Duration Cumulative duration call Duration per call (seconds)

Subroutine seconds % R seconds % R count mean min skew max Drill-down
db file sequential read 2,573.170 96.4% 2,573.170 96.4% 711,712 0.003615 0.0000tE el 1515752 sS0L
CPU service, execute calls 168.950 6.3% 2,742,120 102.7% 80 2.111875 0.000000 .1 168930000 sSQL
log file switch completion 0.358 0.0% 2,742.478 102.7% 4 0.089602
db file parallel read 0.038 0.0% 2,742.518 102.7% 1 0.037590
unaccounted-for between dbcalls 0.033 0.0% 2,742.549 102.7% s 0.006675
log file sync 0.023 0.0% 2,742,572 102.7% 1 0.022776
CPU =ervice, fetch calls 0.020 0.0% 2,742.592 102.7% 1,121 0.000018
SQL*Net message from client 0.010 0.0% 2,742,602 102.7% g 0.001310 D0.o0o7en _ ol 0002808
SQL*MNet message to client 0.000 0.0% 2,742,602 102.7% g 0.000003 0000000 =l ocoooois
CPU service, prepare calls 0.000 0.0% 2,742.602 102.7% 75 0.000000 0.000000 - 0.00000
unaccounted-for within dbcalls -73.127 -2.7% 2,669.476 100.0% 1,275 -0.057354 -73as40140 W 000000000000 0.00372
Total 2,669.476 100.0%

16

Trace showing response time skew

= Qutof 711,712 1/0s, 11% accounted for 72% of the response time (!)

Skew pictogram: .

Range {min = & <« max}

(=econds) Curation Cumulative duration

min max Call count seconds %a % R zeconds % % R
0.000000 0.000001 0 0.000 0.0% 0.0% 0.000 0.0%a 0.0%
0.000001 0.000010 0 0.000 0.0% 0.0% 0.000 0.0%a 0.0%
0.000010 0.000100 10,504 0.412 0.0% 0.0% 0.412 0.0%a 0.0%
0.000100 0.001000 514,859 134.316 7.2% 6.9% 184.727 7.2% 6.9%
0.001000 0.010000 105,632 450.772 17.9% 17.3% 645.499 25.1% 24.2%
0.010000 0.100000 79,157 1,657.105 64.4% 62.1% 2,302.604 89.5% 86.3%
0.100000 1.000000 1,254 263.837 10.3% 9.9% 2,566.441 99.7% 96.1%
1.000000 10.000000 b 6.728 0.3% 0.3% 2,573.170 100.0% 96.4%
10.000000 100.000000 0 0.000 0.0% 0.0% 2,573.170 100.0% 96.4%
100.000000 1,000.000000 0 0.000 0.0% 0.0% 2,573.170 100.0% 96.4%
1,000.000000 Infinity 0 0.000 0.0% 0.0% 2,573.170 100.0% 96.4%

Total 711,712 2,573.170 100.0% 96.4%

17

Response time skew

18

= 10046 trace data allows the performance
analyst to illustrate things that are difficult to

see otherwise
= Like showing how many I/Os took between
.034 and .1 seconds

o By datafile
e With minimum, maximum and average times

= This sort of data is handy when arguing with
your disk folks

Trace profile example — skewed reads

Histogram
Duration Cumulative duration Call ST pEr el EEL
spl (seconds) (seconds) count mean min max
108 40.257443 9.0% 40.257 9.0% 793 0.050766 0.034011 0.096975
109 36.370212 8.1% 76.628 17.1% 714 0.050939 0.034039 0.099068
107 33.373796 7.5% 110.001 24.6% 650 0.051344 0.034015 0.099882
111 32.765686 7.3% 142.767 31.9% 656 0.049943 0.034026 0.099371
112 30.900416 6.9% 173.668 38.9% 608 0.050823 0.034013 0.099653
110 27.729186 B8.2% 201.397 45.1% 241 0.051255 0.034013 0.099906
113 26.951323 6.0% 228.348 51.1% 526 0.051238 0.034005 0.099154
114 25.558787 5.7% 253.907 56.8% 503 0.050813 0.034035 0.099987
22 21.874214 4.9% 275.781 61.7% 415 0.052709 0.034003 0.099381
11 21.325552 4.8% 297.107 66.5% 404 0.0527586 0.034084 0.096402
21 19.7934388 4.4% 316.900 70.9% 364 0.054378 0.034134 0.095450
20 16.061555 3.6% 332.962 74.5% 308 0.052143 0.034139 0.096461
16 14.803718 3.3% 347.765 77.8% 288 0.051402 0.034024 0.097250
15 14.749035 3.3% 362.514 831.1% 280 0.052675 0.034042 0.096594
15 14.615227 3.3% 377.130 84.4% 279 0.052354 0.034022 0.097969
12 13.650224 3.1% 390.780 87.4% 262 0.052100 0.034053 0.099772
10 13.286173 3.0% 404.066 90.4% 249 0.053358 0.034019 0.096539
13 12.073496 2.7% 416.140 93.1% 228 0.052954 0.034269 0.095813
17 10.866008 2.4% 427.006 95.5% 211 0.051458 0.034002 0.097333
14 10.020653 2.2% 437.026 97.8% 197 0.050866 0.034193 0.094601
19 9,975718 2.2% 447.002 100.0% 157 0.053346 0.034089 0.099326
Total 447.001910 100.0% 8,603 0.051599 0.034002 0.099987

19

Continuous DB Wide Monitoring Tools

= 24/7 sampling provides real-time and
historical perspective

= Allows DBA to go back in time
e User calls, says the batch flow was hung at 3 AM
this morning
= Use built-in utilities - trend reports, graphs,
etc to communicate with other groups
e What things are starting to perform poorly?
e What progress have we made while tuning?

e When did the code change go in that is now
thrashing the system to death?

20

Oracle Wait Events

21

® QOracle instruments more of the kernel with
each release

= Often expanding events (like TX Enqueue)
= 379 wait events in 9iR2

= 871 wait events in 10GR2

= 028 wait events in 11.1

Oracle Wait Interface

22

= V$SESSION_WAIT (X$KSUSECST)
e SID (join to v$session)
e EVENT
e P1, P1IRAW, P2, P2RAW, P3, P3RAW
e STATE = '"WAITING’ — currently waiting on event
e STATE = "WAITED...” — currently on CPU (or in queue)

" Oracle 10g added this info to V$SESSION

Oracle Sessions

= V$SESSION (X$KSUSE)
e SID

USERNAME

SQL_HASH_VALUE

— Join to V$SQL

PROGRAM

MODULE / ACTION
— DBMS_APPLICATION_INFO

PLAN_HASH_VALUE
— Join to V$SQL_PLAN

23

Base Query

SELECT
sid, usernane, program nodule, action,
machi ne, osuser, sqgl _hash_val ue,
decode(state, ‘WAITING, event, ‘CPU) event,
pl, plraw, p2, ..,
SYSDATE

FROM V$SESSI ON s

WHERE s.status = * ACTI VE

AND event NOT IN (<idle wait events>);

24

Additional Information

= V$SESSION

e service_name, machine, client_info
e row_wait_obj#, blocking_session

= Go back later to get
o Sql_text from v$sql
e SQL stats from v$sqglarea
e Execution plan from v$sqgl_plan
e Object info from dba_objects

25

Active Session History

= V$ACTIVE_SESSION_HISTORY

o Data warehouse for session statistics
e Oracle 10g and higher

e Data is sampled every second

Holds at least one hour of history

Never bigger than:
— 2% of SGA_TARGET
— 5% of SHARED_POOL (if automatic sga sizing is turned off)

= WRH$_ACTIVE_SESSION_HISTORY
e Above table gets flushed to this table

26

Top Wait Time (52 Customers)

= db file sequential read - 28%
= db file scattered read - 27%
= CPU - 12%
= direct path read / write -11%
= buffer busy waits - 5%
" |og file sync - 3%
" library cache lock - 2%
" |og buffer space - 2%

27

Case Study One
Hot Block Issue

Problem Observed

= Critical situation: application performance
unsatisfactory

o All email coming into and going out of the
company was tracked in order to find:
— Viruses
— Espionage
— Also for legal compliance reasons
e However, email was getting behind
e Email not getting to end-users for several hours

e Declared a top priority in company

29

30

Wait Events During Problem

DOl ar cammits

Email Status

Email Sert

OEM Uzed Space

SQL Hash Values

OEM Free Space

10:33785750

. dhb file sequential read
log file switch completion
B buiter busy waits
EnuUELE
direct path read
zeszion allacation
. log file sync
library cache

“rea

Top SOLs causing user wait time
(DOUBLE-CLICK BARS FOR DETAILS)

Query that
is doing
|” work

200000 300000
Seconds of waiting

100000

. free buffer waits
. undo segment extension
b file scattered read
. azync disk 1O
rowy cache lock
redo allocstion
. engueus hash chains
. rawy cache objects

Buffer busy

WEIS

400000 00000 G00000

. witite complete waits
cache huffers chainz
B direct path vwrite
rdbms ipc reply
M cru
cache huffers Iru chain
. shared pool
cantrol file sequential read

What do we know?

31

= Which SQL:

= Which Resource:

" How much time:

DDL or Commits
SQL hash_value=0

buffer busy waits
log file waits

163 Hours of wait
time per day

“buffer busy waits” Description

= Buffer is being read into cache by another
session and this session is waiting for that
process to complete.
e In Oracle 10g buffer busy waits are further refined

and this becomes “read by other session”

= Buffer is already in the cache but in an
incompatible mode, e.g., another session is
changing it.

32

“buffer busy waits” Description

= P1 — file number information
= P2 — block number information

SELECT owner, segnent nane, segnent _type

FROM dba_extents

WHERE file id = &P1

AND &P2 BETWEEN bl ock id AND block id + blocks -1

= Gives information about the object being
waited for

33

“buffer busy waits” Description

= Waiting on Data Blocks
e Tune Inefficient Queries
e Eliminate Hot Blocks

= Waiting on Segment Headers
e Optimize PCTFREE / PCTUSED
e Use Multiple Freelists
e Use Larger Extents
e Optimize Application

34

“buffer busy waits” Analysis

STREPO (Administrator) fio lgniter, Suite - [Repositony]
uly Eile Edit \iew Tools Reports @Alerts Window Help

Q © 0 0 & § @ 4

Connect Refresh fonitar Stakus Error Log Display- bptions Alert Status Alert History Open Report

= :j Repositon - BOEINGR@CUSTREFO ” Chart]
= [@ Database Instances 7

- [BERTPROD_BLY_SPDB_O1 (Manitor Stopped - Oracl B Q& %E -
- 3 Tuesday - Movember 22, 2005

Sunday - Movermber 20, 2005
5| Saturday - November 19, 2005
-] Friday - Movember 18, 2005
514 Thursday - Movember 17, 2005
-0 11:00 PM to 12:00 Ak
) 10:00 PA to 17:00 PM
) 200 P bo 10:00 FPrd
[) 800 P to 300 PM
(%) 7:00 PM ta 8:00 P
= S0 = Top SOL
. Right-click iterns Below far mare option:
=150 DL or commits
- TopWaits
= buffer busp waits
; Click file to show hot block

Blockid

) Monday - Noverber 21, 2005 Hot Block Chart - Seconds of waiting per block

+- T [/db04/oradata/bertprod/staging_01.dbi]
+ : Adb01 foradatas/bertprodd sy
+ : Adbl3/oradata/bertprod/o’
T row cache lock
= enqueue r
- : rdbmz ipc reply '
¥ T db fle sequential read = 0 2000 4000 GOOD BOOD 10000 12000 14000 16000
% She : ':‘" e B Seconds of waiting

| 2A1 472007

| 4:31 PM

35

" Found hot block problem

e “buffer busy waits” was waiting for Block #2 in
the file “...staging01.dbf”

e The email processing code was creating a series of
staging tables, every time it executed

= Solutions

e Started using temporary tables vs. create/drop
distinct tables each time the process ran

36

Case Study Two
DB File Scattered Reads

Problem Observed

" Problem: One database using excessive CPU
resources on a shared server, impacting other

customers
e High wait accumulation during business hours

e 20 Hours Every Day

e Other applications databases were being starved of
CPU and I/O resources

38

Investigation

Two statements responsible for nearly all of the wait time

ASSCPROD_NIRVANA
Top 20 SQL Statements by Total Daily Wait
December 16, 2008 to January 8, 2009

- 1840280600 W 806291563
yot) 995334363 M 114631058
M GetYYMMDD W3024912125
20.01 W 3201867460 W 3002025359
175 1 W 2655168285 W 4161576260
150+ WDODL orcommits 3008171142

Daily Wait Time (hours)

k3 h =l
U|DU|

125] m1340227927 ®1193820252
. 1945880583
(3517222579
: W 3446994129
: m1619415953
. 532293311
T = -, A 1366039313

0.0
Dec16 Dec18 Dec20 Dec22 Dec24 Dec26 Dec28 Dec30 Jan1 Jan 3 Jans Jan7

39

Investigation

= Lots of wait time for db file scattered reads for SQL
1840280609 (primary consumer from previous slide)

ASSCPROD_NIRVANA

Total Daily Wait Time for SQL 1840280609

December 18, 2008 to January 16, 2009

225+ [~ dhb file scattered read

ECPU
W huffer busy waits
W cache buffers chains
Wb file sequential read
W cache buffers Ird chain
Emultiblock read objects
M simulator Iru latch
M session allocation

SQL*Met message to client
W session idle bit
W zsimulator hash latch

0.0o- : M ibrary cache pin
Dec18 Dec24 Dec30 Jansg Jan 11 I engueues

200 -

a
-
in

a
o
o

125 -

10.0 -

Daily Wait Time (hours)
.
o

o
o
,

25-

M log file sync

40

What do we know?

41

= Which SQL:

= Which Resource:

" How much time:

1840280609
(voting tally)

scattered read
buffer busy waits

20+ Hours
Every Day

Hypotheses: Oracle Interpretations

42

Key Questions:
1. Is full table scan necessary?

2. What causes a full table scan for this SQL
Statement?

Two Alternative paths for optimization:

I. Eliminate Full Table Scan
1. Add Index / Collect Histograms
2. Update Statistics
3. Utilize Query Hints

II. Full Table Scan Required - Improve response time
1. Parallelized Reads
2. Optimize I/O Subsystem
3. Optimize Application

I. Unnecessary Full Table Scan?

Solutions:
1. Add / Modify index(es) on the table

2. Update table and/or index statistics if proper
index not being used

3. Add hint to use existing index

43

Full Table Scan is Needed

Two alternative paths for optimization:

II. Improve response time

e We need to read most or all of the table anyway,
so let’s just figure out how to do it faster

44

II. Improve Response Time for Db

File Scattered Reads

Solutions:

1. Use Parallel Reads

2. Set Database Parameters
3. Improve I/O Speed

4. Optimize the application

45

1. Use Parallel Reads = Faster FTS

= Parallel Reads

e Can be set at the table level (use with caution)
Alter table customer parallel degree 4;
e Normally used by hinting in the SQL Statement

select /*+ FULL(customer) PARALLEL(customer, 4) */ customer_name
from customer;

= A delicate tradeoff

 sacrifice the performance of others for the running query.

e Parallel Query is designed to maximally utilize your hardware — does
not play well with others.

" Not necessarily efficient
e Just may be faster.

o Parallel Reads may actually do twice the work of a serial query but
have four workers, thus finishing in half the time while using 8x

resources
46

2. Set database parameters

= DB_FILE_MULTIBLOCK_READ_COUNT

e specifies the maximum number of blocks read in one I/O
operation during a sequential scan

e Impacts the optimizer

e Reduces number of system I/Os calls required to read a set
of data

e For OLTP, typically set to between 4 to 16, in newer versions
of Oracle it may be best left unset

e Optimizer will more likely to FTS if set too high

= Ensure that the database read requests are synced up
with the O/S.

" This gets tricky if different block sizes are used in
different tablespaces

47

3. Improve I/O speed

" Get your SA involved

= Investigate I/O sub-system
o Jostat, vmstat, sar, ... for potential problems

e Monitor during high activity
e There may be a whole host of things wrong

= Investigate contention at the disk/controller
level.

e Learn which disks share common resources
e Use more disks to spread I/O and reduce hot spots

= Investigate caching and current memory
usage

48

4. Optimizing the Application

= Review application — do you have access to
code for changes?
e No — look into stored outlines

" Techniques to Optimize a statement:

e Reduce the number of calls for a SQL
— Caching the data in the application
— Creating a summary table (perhaps via a materialized view)
— Eliminating the need for the data

e Retrieve Less Data with each statement
— Add fields to the WHERE clause

49

" Added indexes to table

ASSCPROD_NIRVANA Full Table
Daily Average Wait Time for SQL 1840280609 .
December 18, 2008 to January 16, 2009 Scan Fixed

u

D-
Dec18 Dec 21 Dec 24 Dec 27 Dec 30 Jan 2 Jans Jan g Jan 11 Jan1

=
h
(=]

-
(2]
o

100 4

h
(=]
X

(2]
o

Daily Average Wait Time (milliseconds)
-]
oh

50

= Statement statistics — 24 hour snapshots

Statistic Before After Difference
Executions 554,872 539,147 (15,725)
Rows processed 554,870 539,170 (15,700)
Parses 502 568 66
Disk reads 766,490,774
Buffer gets 1,300,242,461 | 2,064,534 (1,298,177,925)

51

Case Study Three
DB File Sequential Reads

Problem Observed

53

= Data Warehouse loads were taking too long

= Noticed high wait times on “db file sequential
read” wait event

= DBAs were confused — why are data loads
“reading” data

Investigation

Resource utilization across DB Users
{DOUBLE-CLICK BARS FOR DETAILS)

ECALOAD

ITCEA

HLMST G

HLMALERT

HLMREPORT

COHERENT

Oracle Database Users

PO _PROD_READCMLY

54

55

Investigation for an INSERT Statement

Resource wlilization acroess 05 Users
(DOUBLE-CLICK BARS FOR DETAILS)

MDEX PARTITICON STAGE ATTR P

HOEX SUBPARTITION Dl CRIVE_ATTR_PH

HDEN SUBPAR TITION DRIVE DRIVE _COMPONENTS P
MDEY SUBPARTITION DRIVE EVENT_TSTR D P_BIX

DD SLIEPARTITION DRMAVE COMPOMENTS _MEDLL_P_ Bl

Operating Systom Users

NDEX SUBSARTITION DRMVE COMPONENTS DRTVE HEY P_Bi

INEEDN SUBFARTITICN BRIVE COMPONENTS. STACK _P_[X

RO SUBPARTITION DRIVE EVENT_STACK_PROD. P

. /
01000 70003000 4000 SO00 6000 700G GO0
Seconds of waiting
b f deguenisl e I (=1 W log e ayne
S0L et more date froen chent e TX - nosw iock contenticon

Sequential read time
by object for SQL

What do we know?

56

= Which SQL:

= Which Resource:

" How much time:

Load Process

DB File Sequential
Read

5 hour+
90% of wait time

57

Investigating db file sequential reads

= Often considered a “good” read

= DB file sequential reads normally occur during
index lookups

= Single-block read
e P1 —file id
e P2 —block id
e P3 — number of blocks read
e Join to DBA_EXTENTS (see buffer busy waits)

Hypotheses: Oracle Interpretations of

Sequential Reads

Causes of excessive wait times:
I. Reading too many index leaf blocks
II. Low cardinality first column index

II1. Not finding block in buffer cache forces disk
read

IV. Slow disk reads

58

I. Reading too many index and table

blocks (cont)

1. Rebuild Fragmented Indexes
e alter index rebuild [online];

e Consider
http://www.jlcomp.demon.co.uk/index_efficiency.html

2. Compress Indexes
e alter index rebuild compress;
e Uses more CPU

3. Multi-column indexes
e Avoid the table lookup
e Will create a larger index

4. Pre-sort Table data

59

II. Low cardinality first column index

= If first column of index is low / medium
cardinality, much time is spent scanning the
index leaf blocks

" The additional columns do not lower the
number of leaf blocks that are read.

= Solutions:
e Use a leading column with better cardinality
e Compress the index

60

III. Not finding block in buffer cache

forces disk read

= Db File sequential reads occur because the
block is not in the buffer cache.

" How do we make sure more blocks are
already in the cache?

= Solutions
1. Increase the size of the buffer cache(s)

2. Put the object in a cache where it is less likely to
get flushed out

61

IV. Slow disk reads

62

= With databases, it often comes down to this —
the disk just needs to be faster

= Put certain objects on the fastest disk

= Q/S file caching using special software that
makes normal files perform like raw files

" Increase Storage System Caching — such as
an EMC cache

63

= Many sessions were loading data and all were
updating low cardinality indexes

" Modified index and noticed a 50%
performance improvement in an INSERT

= Customer is also analyzing global vs. local
indexes

= Reviewing usage of bitmap indexes
" Removed unused indexes
" Enhanced the disk subsystem

Case Study Four
Cache Buffers Chains Latching

Problem Observed

" Problem: High Wait on Production CRM
Database

e Accumulated wait 20 hours (72,000 sec) during
peak online hours

e End users in Virginia were complaining vigorously —
they could not perform their jobs

65

Investigation

FEEL_FEKL
Top 15 Wait Events by Total Daily Wait
Auqust 15, 2005 - September 14, 2005

140

130 &
120 4
110 2
100 -3
an
a0

Laly wan 1ime
(hours)

60 -

40

20

D i F F F F 4 4 F F F a4 4 r F F a4 F F 4 F F a4 a4
Aug 1y Aug 20 Aug 23 Aug 26 Aug 29 Sep 1 Sep 4 Sep 7 SZep 10 Sep13
B dbfile sequential read B coltmet message from client [l buffer busy waits
_| dbfile scattered read] saLet message to client O cache buffers chains
B 1o file syne] direct path read B direct path write
B soL*Met rmore data from client [l 10g buffer space I enqueue
!| db file parallel read [] saLmMet more data to client B shared pool
All Athar awvante

66

Investigation — which events?

Resource utilization across Time Periods =
{(DOUBLE-CLICK BARS FOR DETAILS)
7:00 Ph to 8:00 PM
B:00 Phito 7:00 P
5:00 PM to 5:00 PM
L]
.E 4:00 PM to 5:00 PM
-9
E 3:00 Ph to 4:00 PM
2:00 Phito 3:00 P
1:00 PM to 2:00 PM
12:00 Ph ta 1:00 P
v
0 10000 20000 30000 40000 50000 £O000
Seconds of waiting "

67

Investigation — SQL statement

PERL_PERL
Wait Event Time Distribution for SOL 224454554
August 13, 2005 - September 14, 2005

520
s00 4
430 1
450 1
440 4
420
400 -4
380
360
340 4
320 o
300 4
280 |
260 1
240 1
220 4
200 -4
180 |
160
140
120
100
80

40 m I

e

Daily Wait Time
(minutes)

oV F V" F FFF P L S

Aug 17 Aug 20 Aug 23 Aug 26 Aug 29 Zep 1 Sep 4

P

Sep ¥ Sep 10 Sepil3

68 |. buffer busy waits [] s0L*Met message to client [cache buffers chains

What do we know?

69

= Which SQL:

= Which Resources:

" How much time:

224454554

CBC latching
buffer busy waits

A bunch
every weekday

Cache Buffers Chains Latching

= CBC latches protect memory structures called hash
chains, which hang off hash buckets

" The hash chains are fixed-depth linked lists of buffer
headers that point to the actual buffers in the cache

" The data block address (DBA) is hashed to find the
haslg chain to be searched to find the location in
cache

= Accessing a block on the hash chain requires
acquisition of the latch protecting that particular chain
(9i and later allows shared read-only access for some
operations — although apparently not FTS)

. Tr?is prevents other processes from modifying the
chain

70

CBC Latches and Hash chains

Buffers in cache

@ (L L
—2 P el |
[‘ (’ /E—v /:
® T =
< —
[‘ / - CBC Latch
‘ Q Hash Bucket
- Buffer Headers

71

Cache Buffers Chains Latching

= Excessive CBC latching can be problematic
because
e All LIOs require latch gets

e CBC latches cover many buffer headers, and only
one process can exclusively hold a CBC latch

e Once a process goes to acquire a latch, it either
gets the latch or spins/sleeps until it gets the latch

e Latching is not FIFO
e Latching drives up CPU

72

Cache Buffers Chains Latching

= Causes

o Inefficient SQL statements

— Too many LIOs
— High concurrency
— Bad plans

e Hot Blocks

— Find hot blocks via v$session_wait.plraw (latch address)
— Confirm hot blocks by looking at touch count in x$bh.tch for x$bh.hladdr (from

v$session_wait)
— Map x$bh.obj to object_id or data_object_id from dba_objects

— Determine why the application hits those blocks so frequently

e Long hash chains
e A combination of the first two

73

Finding chains with hot blocks

sel ect sid, plraw, p2, p3, seconds in wait, wait tine, state
fromv$sessi on_wait

where event = ‘latch free’

order by p2, plraw,

plraw is the latch address
p2 is the latch number

Sessions waiting on the same latch address shows you have hot blocks on a
chain

From OWI book.

74

Cache Buffers Chains Latching

" Cures

» Find and fix culprits
— Tune SQL to require fewer LIOs

e Reduce concurrency
— Usually by fixing the application

75

= Inefficient SQL, made worse by high
concurrency

= SQL was not using indexes, lots of LIOs

= Lots of folks running the SQL
e It took too long

e The application must be hung! I'll resubmit...
— Again
— And again

76

= SQL statement was examined, and
determined that an implicit type conversion
was causing indexes to not be used:
comparing numbers and character strings

=S
d
=C

77

howed up in the filter predicates from
boms_xplan output

nanged the code to use the correct values

78

PERL_PERL
Wait Event Time Distribution for SOL 224454554
August 15, 2005 - September 14, 2005

520
s00 &
450 &
480 &
440 &
420 H
400 &
380 &
360
340 ¢
320 ¢
300
280 +
260 &
240 +
e
200 &
180 |
160
140 |
120 -+
100 |
a0

40 m I
20 I

g ==

Daily Wait Time
(minutes)

2 A

Aug 17 ASug 20 Aug 23 Aug 26 Aug 29 Sep Sep 4

ey F §F F— FpFF F F r

Sep ¥ Seph 10 Sep13

Bl huffer busy waits [] saL*met ressage to client [cache buffers chains

79

FEEL_FEKL
Top 15 Wait Events by Total Daily Wait
Auqust 15, 2005 - September 14, 2005

140
130 &
120 &
110 &

100

W
=

&0

05

Daily Wait Time
(hours)

60 -

a2l

30

Aug 17 Aug 20

Aug 23

Aug 26 Aug 29 Sep

Sep 4

Sep 7 Sep10 Sep13

B b file sequential read
_| dbfile scattered read

lnn fila cune

. SQL*Met message from client
L] soL™Met message to client

dirart nath raad

B huffer busy waits
O cache buffers chains

dirart nath werita

80

CPU consumption

rosoft Internet Explorer provi by Nationwide

File Edit View Favorites Tools Help

@Back v &d lﬂ @ ;‘J /.’\JSearch -;I_‘\‘T_“Favor\hes Q_‘T ,; - _

(before)

http:/fperceive. nwie.net:3080 /gty index. html

« Computer Views (default)
Activity View
Performance View

001

501

DERO® S

10:20 4200 1320 1500 1630 1800 1930 2100 22:30 0:00

»’oﬁ http://perceive.nwie.net:3080fqtv/

&J Local intranet

PU consumption (after)

Perceive - Microsoft Internet Explorer provided by Nationwide

File Edit View Favorites Tools Help D

@Back il > | \ﬂ @ ;‘J /T]Search -;I_‘\‘T\.“Favor\hes {‘T ’; T |

http fg"perceive_ i

et:3080/gtv,/ind

& =d
Perceive <bmesoftware
‘ Feedback | Administrator | 7 Help
00 © page el
~Computer Views (default) Group:[[Al] %] Computer: [MMM | Time: | o/12/2005-9/13/2005 |v|]
Activity View
Performance View
1007
01|
a0t
707/
80T
50
407]

900 1020 1200 1230 1500 4630 1500 19230 2100 2230 000

8 1 @ Done

&J |ocal intranet

82

Wait Events for Development

®= Tuning SQL for optimal performance
= Debug/test/integrate/pilot process
= Understand impact on existing database

= Understand Oracle impact on application
performance

= View into production for better development
prioritization and feedback

= Reduce finger-pointing

Conclusion

= Conventional Tuning focused on “system
health” and lead to finger-pointing and
confusion

= Wait event tuning implemented according to
three principles is the best way to tune

= Two compliant tools types
e Trace profiling tools
e Continuous DB-wide monitoring tools

83

References

Shee, R.; Deshpande, K.; Gopalakrishnan, K. 2004. Oracle Wait
Interface: A Practical Guide to Performance Diagnostics &
Tuning, McGraw-Hill/Osborne

84

Questions?

85

Thank you!

Thank you for coming to this presentation

Contact information for further questions

— Please put “wait time presentation in the subject.

86

