Beefing up Memory Sizes in 10g
Mike Ault, Oracle Domain Specialist, Quest Software
Introduction

Oracle’s Oracle10g requires more memory than was ever required before. If you utilize any of the new features such as automatic storage management (ASM) and automatic shared memory management (ASMM) then you really need to pay attention to what memory is doing in 10g.

Why do I say that you need to really pay close attention? Well, in 10g the ASMM feature will rob Peter to pay Paul as the old saying goes. If it sees the shared pool requires more space, it will take it, if it can, from the buffer cache, and of course, the obverse is also true. This memory shuffle is fine on systems where there are gradual shifts in memory needs, however it can lead to some issues in rapidly changing environments.
ASMM (Automatic Shared Memory Management)

In Oracle10g by setting the initialization parameters SGA_TARGET and SGA_MAX_SIZE you turn on ASMM. ASMM looks at memory based statistics to dynamically alter the settings for the following SGA areas:

· DB_CACHE_SIZE

· SHARED_POOL_SIZE

· LARGE_POOL_SIZE

· JAVA_POOL_SIZE
· STREAMS POOL

ASMM Problems

As wonderful as automatic shared memory management looks on the surface, there are still many issues with it and you should be aware of these before turning over you database to automatic control. Let’s look at a case in point:

On a RedHat 4.0 4-CPU Opteron (2-Chip, 4-core) using 6 gigabytes of memory in a 2-node RAC, the client kept getting ORA-07445’s when their user load exceeded 60 users per node. At 100 users per node they were getting these errors, a core dump for each and a trace file on each server, for each node, about twice per minute. There didn’t seem to be any operational errors associated with it, but it seriously affected IO rates to the SAN and filled up the UDUMP and BDUMP areas quickly. Of course when the BDUMP area filled up the database tends to choke.

The client is using ASMM with SGA_TARGET and SGA_MAX_SIZE set and no hard settings for the cache or shared pool sizes. Initially we filed an ITar or SR or whatever they are calling them these days but didn’t get much response on it. So the client suffered until I could get on site and do some looking.

I looked at memory foot print, CPU foot print and user logins and compared them to the incident levels of the ORA-07445. There was a clear correlation to the number of users, memory usage and the incidence of 7445 errors. Remembering that the resize operations are recorded I then looked in the GV$SGA_RESIZE_OPS dynamic performance view (DPV) and then correlated the various memory operations to the incidences of the ORA-07445, the errors only seemed to occur when a shrink occurred in the shared pool, as we saw the error on node 1 where a shrink occurred and none on node 2 where no shrink had happened yet.

Date: 03/03/06 Page: 2

Time: 02:33 PM Resize OPS BEIMON

 client1 database

I Component Oper PARAMETER INITIAL TARGET FINAL STATUS S_TIME E_TIME

- ----------- ------ ---------------- --------- --------- --------- -------- ------------ ------------

1 shared pool STATIC shared_pool_size 0 268435456 268435456 COMPLETE 200603031055 200603031055

1 shared pool GROW shared_pool_size 268435456 285212672 285212672 COMPLETE 200603031104 200603031104

1 shared pool GROW shared_pool_size 285212672 301989888 301989888 COMPLETE 200603031249 200603031249

1 shared pool SHRINK shared_pool_size 301989888 285212672 285212672 COMPLETE 200603031253 200603031253

1 shared pool GROW shared_pool_size 285212672 301989888 301989888 COMPLETE 200603031300 200603031300

1 shared pool SHRINK shared_pool_size 301989888 285212672 285212672 COMPLETE 200603031303 200603031303

1 shared pool GROW shared_pool_size 285212672 301989888 301989888 COMPLETE 200603031346 200603031346

1 shared pool SHRINK shared_pool_size 301989888 285212672 285212672 COMPLETE 200603031410 200603031410

Figure 1: Resize Operations

Sure enough, hard setting the SHARED_POOL_SIZE to a minimum value delayed the error so that it didn’t start occurring until the pool extended above the minimum then shrank back to it, however, not every time. We were able to boost the number of users to 80 before the error started occurring by hard setting the shared pool to 250 megabytes. A further boost to the shared pool size to 300 megabytes seems to have corrected the issue so far but we will have to monitor this as the number of user processes increases. Note that you need to look at the GV$SGA_RESIZE_OPS DPV to see what resize operations are occurring and the peak size reached to find the correct setting on your system.
It appears that there must some internal list of HASH values that is not being cleaned up when the shared pool is shrunk. This results in the kernel expecting to find a piece of code at a particular address, looking for it and not finding it, this generates the ORA-07445. Of course this is just speculation on my part.

HPUX Issue
Another reported issue is on HPUX 11.11 where there has been an observed memory leak for each committed DML on a table which has a materialized view log. The size of the memory leak is constant and appears to be independent of the size of the transaction that is committed. If materialized view logs are dropped, the leak stops. Also, it appears that disabling Automatic Shared Memory Management (ASMM) works around the problem. Oracle has promise a fix in version Oracle11g version 11.1.

Large and Java Pool Issue
In another ASMM bug, The large_pool_size and java_pool_size components do not scale downwards, only db_cache_size and shared_pool_size are able to shrink when memory needs to be reallocated to another component.

Even though the lower bounds of large_pool_size and java_pool_size are set far lower than the current allocation and v$sgastat shows that the memory is free in these pools, no dynamic shrink of the pools is made when memory needs to be reallocated to another component, instead ORA-00384 ("Insufficient memory to grow cache") is raised. Again, the promised fix will not occur until Oracle11g.

DBCA Gotcha

One additional note, if you use the DBCA to create your 10g environment it may set SGA_MAX_SIZE equal to SGA_TARGET resulting in ASMM being turned on, but being unable to perform any operations.

Shared Pool

Those of you who have been fans of mine know I am not one to push over sizing the shared pool. That having been said, in Oracle10g using real application clusters (RAC) with or without ASM you may need to really boost the size of your shared pool if you want any room left for the SQL and PL/SQL areas.

In earlier editions of the Oracle database (up through 9i) a shared pool of up to 200-300 megabytes was usually sufficient for all but the most complex applications. For complex applications such as Oracle Apps, 400-500 megabyte SGAs where often required (sometimes larger) due to the huge amount of stored PLSQL code they contained. Now in Oracle10g, especially if you utilize ASM and RAC, 300-400 megabyte Shared Pools may become common place.
According to Lutz Hartman at: ”http://luhartma.blogspot.com/2006/03/how-to-calculate-minimum-size-of.html” the actual formulae to account for ASM and ASM mirroring for the shared pool is:

(1MB of additional shared pool for every 100GB of disk space) + additionally 2MB for external redundancy (no mirroring),
(1MB of additional shared pool for every 50GB of disk space) + additionally 4MB for normal redundancy (two mirrors)
and
(1MB of additional shared pool for every 33GB of disk space) + additionally 6MB for high redundancy (three mirrors)
In addition to ASM considerations you must also account for the effect of the Global Enqueue and Global Cache Services on the shared pool. If you look at an Oracle10g system that doesn’t utilize RAC and ASM you will see the top ten areas in the shared pool look something like figure 2.

Date: 11/02/06 Page: 1

Time: 03:21 PM Shared Pool Component Sizes SYSTEM

 qaultdb database

Pool NAME BYTES PERCENT

------------ --------------------- ---------------- ----------

shared pool free memory 38,106,136 6.22275

shared pool sql area 10,994,664 1.79543

shared pool library cache 7,635,064 1.24681

shared pool ASH buffers 4,194,304 .68493

shared pool KCB Table Scan Buffer 3,981,204 .65013

shared pool KSFD SGA I/O b 3,977,128 .64947

shared pool row cache 3,741,868 .61105

shared pool KQR M PO 3,487,864 .56957

shared pool KGLS heap 3,398,252 .55494

shared pool KQR M SO 3,196,988 .52207

Figure 2: Top Ten (by size) components of the shared pool

As you can see in this not very large or busy database the free memory and SQL areas dominate. Now let’s look at figure 3 which shows 10gR2 RAC with ASM environment that utilizes around 3 gigabytes of SGA buffers.
Date: 09/19/06 Page: 1

Time: 09:25 PM Shared Pool Component Sizes SYSTEM

 aultqdb2 database

Pool NAME BYTES PERCENT

----------- --------------------- ----------- --------

shared pool free memory 188,206,296 12.89422

shared pool sql area 16,147,332 1.10627

shared pool gcs resources 14,028,768 .96113

shared pool gcs shadows 9,894,368 .67787

shared pool library cache 6,783,228 .46473

shared pool KQR M PO 4,358,876 .29863

shared pool ges big msg buffers 4,334,404 .29695

shared pool XDB Schema Cac 4,263,024 .29206

shared pool KCB Table Scan Buffer 4,198,400 .28764

shared pool ASH buffers 4,194,304 .28736
Figure 3: RAC Top Ten Components of the shared pool

As you can see the RAC (GCS and GES components) are taking nearly 28 megabytes of the shared pool just from this top ten list, if you added up all of the GCS and GES components spread throughout the nearly 12 pages of 10gR2 shared pool components you would get closer to 30 megabytes of shared spool space being consumed by the global cache and global enqueue service buffer and message areas in the shared pool. This is for a combined buffer area between the RAC instances of about 3 gigabytes, so it is running about 1 percent of the size of the combined buffer areas. You must account for these GES and GCS areas when moving a single database instance into a RAC environment, or when adding an addition instance to an existing RAC or your SQL and PL/SQL areas will suffer. As a basis for comparison on the increased complexities of the shared pool in 10gR2, in Oracle9iR2 there 37 areas in the pool, in 10gR2 with RAC and ASM there are 673 which drops to 554 without RAC and ASM, something tells me it has gotten a bit more difficult to manage.
Bugs in ASM/ASMM/Streams

During testing of a SUN Solaris 10 based system using Oracle10gR2 I encountered a particularly insidious bug in the shared pool. As mentioned above a space leak in the shared pool can occur with combinations of ASM/ASMM and streams.

We found one bug that affected the scalability of the database when streams, ASM (automated Storage Management) and ASMM (Automatic Memory Management) were in use simultaneously. The second bug was a space leak in the ASM Extent Pointer Array area of the shared pool apparently related to the streams/logminer operations. Figure 4 shows the 3-5 megabyte per minute memory leak in the shared pool that resulted from the second bug.

[image: image1.emf]Shared Pool Free

0

100

200

300

400

500

600

700

800

900

14:2414:5215:2115:5016:1916:4817:16

Time

Megabytes

Shared Pool Free

Figure 4: Shared Pool Memory Leak

The sudden leap in memory size in Figure 4 was due to a shutdown and increase in the shared pool size. Figure 5 shows the increase in the ASM Extent Pointer Array during a portion of the test.

[image: image2.emf]ASM Extent Pointer Array

0

100000000

200000000

300000000

400000000

500000000

600000000

14:2414:5215:2115:5016:1916:4817:16

Time

SIze in Bytes

ASM Extent Pointer Array

Figure 5: ASM Extent Pointer Array Size

At the point we were forced to shutdown and resize the shared pool the ASM Pointer Array Size was at 5 gigabytes (oddly, the free memory still indicated 1 gigabyte free!) and had consumed all spare memory. The SGA size report showing the ASM Pointer Size is partially shown in Figure 6 (the entire list in 10g R2 is several pages long).

Date: 05/25/06 Page: 1

Time: 11:47 AM SGA Component Sizes Report SYSTEM

 test1 database

Pool NAME BYTES PERCENT

------------ -------------------------- ---------------- ----------

java pool free memory 60,323,008 .16524

java pool joxlod exec hp 6,664,896 .01826

java pool joxs heap 120,960 .00033

large pool free memory 15,307,712 .04193

large pool PX msg pool 1,076,216 .00295

large pool ASM map operations hashta 393,288 .00108

shared pool ASM extent pointer array 5,675,267,264 15.54570

shared pool free memory 1,140,498,888 3.12406

shared pool gcs resources 896,151,368 2.45474

shared pool gcs shadows 425,493,632 1.16551

shared pool db_block_hash_buckets 141,033,472 .38632

shared pool KGH: NO ACCESS 99,420,768 .27233

shared pool ASH buffers 30,408,704 .08330

shared pool library cache 21,371,712 .05854

shared pool dbwriter coalesce buffer 16,842,752 .04614

shared pool ges enqueues 16,447,328 .04505

shared pool Checkpoint queue 16,392,192 .04490

shared pool ges big msg buffers 15,927,928 .04363

shared pool KCL name table 12,582,912 .03447

shared pool event statistics per sess 10,350,912 .02835
Figure 6: SGA Component Size Report

The test1 instance was the only instance in the cluster to show this behavior and, it was the only instance running with streams and logminer operations being performed. A report from the test2 instance, shown in Figure 7 shows no such extreme growth of the ASM Extent Pointer Array.

Date: 05/25/06 Page: 1

Time: 11:59 AM SGA Component Sizes Report SYSTEM

 test2 database

Pool NAME BYTES PERCENT

------------ -------------------------- ---------------- ----------

java pool free memory 47,005,312 .12876

java pool joxlod exec hp 19,341,504 .05298

java pool joxs heap 762,048 .00209

large pool free memory 15,307,736 .04193

large pool PX msg pool 1,076,216 .00295

large pool ASM map operations hashta 393,264 .00108

shared pool free memory 1,048,541,280 2.87217

shared pool gcs resources 885,132,368 2.42456

shared pool gcs shadows 420,837,248 1.15276

shared pool db_block_hash_buckets 141,033,472 .38632

shared pool KGH: NO ACCESS 66,626,656 .18250

shared pool sql area 37,652,952 .10314

shared pool library cache 30,990,912 .08489

shared pool ASH buffers 30,408,704 .08330

shared pool ASM extent pointer array 18,071,640 .04950
Figure 7: Instance test2 SGA Component Report
The conclusions to be reached here are that when you are utilizing the features of Oracle10g be sure to completely stress test your application at full user load. In the above tests we compiled example transactions and then used the Quest Benchmark Factory tool to ramp the user load up to expected production levels.

Large Pool

You should also configure a large pool when using Oracle10g or Oracle10g RAC and automated storage management (ASM) as the ASM will consume additional space within the shared pool if you don’t for its “ASM map operations hashtable”. In addition to the ASM hash table area, the shared pool will contain a “ASM extent pointer array” that under some conditions, has shown a space leak that can quickly consume the entire amount of free memory (we saw it do this on Solaris 10 using automatic memory management, ASM and streams at the same time.)
In addition Oracle10gR2 RAC also requires parallel query to be configured at a minimal level (about 5 parallel query slaves per instance) this will require the large pool to be configured to handle the “PX msg pool” area. Of course if you are using ASM then RMAN must be used for backup which will also utilize the large pool for its message buffers. If needed, the large pool will be configured at either 4 or 16 megabytes (depending on platform and SGA size) if you do not specify it as a part of the initialization parameters.
Java Pool

The Java Pool is also automatically configured when Oracle10g is started in both normal and RAC environments and defaults to either 4 or 16 megabytes. Oracle10g makes more use of Java in the kernel especially if the new features such as datapump export and import are utilized.
Streams Pool

The streams pool is a new 10g feature of the Oracle10g SGA. If any streams related operations are performed the SGA will consume up to 10% of the size of the shared pool from the buffer area for streams use. I suggest setting a streams pool of 10 percent of the total shared pool size to start and then using the values in the v$sgastat and v$sga_resize_ops dynamic performance views to determine if this value needs to be increased. In some clients sizes of up to 200 megabytes have been required for active streams environments. If the size of the streams pool is insufficient then spills to disk will occur from the streams buffers which will have a significant performance impact on any streams activities.

Process Global Area Considerations
In addition to the Shared Global Area, Oracle10g also utilizes what are known as Process Global Areas or PGA. These PGAs are assigned on a per process basis and on systems with large user populations can exceed the amount of memory used by the SGA. It is very important for the DBA to understand the parameters they control that affect the PGA.
OLAP Page Pool

The Olap page pool comes out of the user global area (UGA), which is a part of the process global area (PGA) in non-MTS mode. The OLAP page pool is needed for Oracle online analytical processing (OLAP). Any time the Oracle Express Engine is utilized the Olap page pool will be utilized.

For example:

The DBMS_AWM package and OLAP table functions are ways to define the metadata in OLAP services or the AW Manager. Once you have created the AW, the data can be accessed using a SELECT statement in conjunction with the OLAP_TABLE function.

By using it within a SELECT statement data from the AW can be accessed / viewed.

Another way to access the AW data is to use the OLAP DML. DML is either executed in the OLAP Worksheet or by using scripts in the DBMS_AW SQL package.

For example:

 SQL> Exec DBMS_AW.EXECUTE("put dml code here")

The olap_page_pool_size is deferred until you use either OLAP related DML calls or the OLAP table functions. If you do not use these, the OLAP page pool will not be allocated.

The range of values for the OLAP pool are 32 MB to 2 GB.

According to Oracle, in Oracle Database 10g the olap_page_pool_size should be set to 0, thus allowing the olap_page_pool_size to be set dynamically based on need and available resources.

PGA_AGGREGATE_TARGET
The subject of the proper setting of the PGA_AGGREGATE_TARGET parameter has nearly come to religious war status. There are undocumented parameters such as:

Parameter Description Default Current

---------------------- ------------------------------ --------- ---------

_pga_large_extent_size PGA large extent size 1048576 1048576

_pga_max_size Maximum size of the PGA memory 209715200 209715200

 for one process
_use_ism_for_pga Use ISM for allocating large TRUE TRUE

 extents
That control how the PGA is defined and in these, the one of most concern is the “_pga_max_size” parameter as it controls the amount of PGA memory for sorting or hashing available to one process when PGA_AGGREGATE_TARGET is set. The default value is 200 megabytes. In order to get to 200 megabytes the PGA_AGGREGATE_TARGET setting must be 4 gigabytes as only 5% of the total PGA_AGGREGATE_TARGET can be allocated to a single process up to the setting of the “_pga_max_size” setting. If the temporary operation exceeds the setting, it will go to disk causing severe performance penalties.

In tests, resetting the value of the “_pga_max_size” parameter proved beneficial when sort or hash (or global temporary table) sizes larger than 200 megabytes where required, however, this required also setting the PGA_AGGREGATE_TARGET larger than 4 gigabytes.

If there are infrequent, large, randomly occurring sorts, hashes, or global temporary table usage that exceed 200 megabytes in size, I suggest tweaking the “_pga_max_size” and PGA_AGGREGATE_TARGET to get the desired results. If there are frequent large temporary operations then consider turning off PGA_AGGREGATE_TARGET and using manual sort settings. Remember that login triggers can be used to set sort and hash area sizes on an individual basis, so if you have large report, index building or other jobs that are batch in nature, consider setting their temporary area sizes automatically while leaving the PGA_AGGREGATE_TARGET settings at a reasonable level for the majority of your users.
Summary

In this presentation we have examined the various memory components of the Oracle10g SGA and PGA environments. We have seen that the SGA, specifically the shared pool, has become a much more complex and vital component to the database system and as such must be properly sized and maintained. We have also examined the use of ASMM and considered the existing issues with ASMM use. We have also discussed the other pools and their sizing issues. Finally, we discussed the PGA and its unique sizing issues. Hopefully you now have a better understanding of Oracle10g and its memory management.
