Database

Welcome to My Nightmare – The Common Performance Errors in Oracle Databases

Michael R. Ault, Quest Software
Introduction

In my 16 years of working with Oracle I have seen the database grow and change as new features are added and old ones removed or changed. However, even as things change, they remain the same in many respects. We still must index properly, set memory settings correctly and specify proper hardware.

You would think that by now everyone would have a pretty good idea what an average configuration for an Oracle small, medium and large database would be, but unfortunately these classifications also undergo mutation. It wasn’t too long ago that if you used several hundred megabytes of disks you had a large database. Now of course large databases are in the terabyte and larger size range. This makes setting tuning guidelines for Oracle databases somewhat of a moving target where the rules change almost as fast as you can derive them.

Given a changing environment for tuning Oracle is the only constant I will try to present in this paper the major issues I have found in the last few years while tuning several dozen different client databases. I will try to present a method or methods for determining set points that take into account this changing beast that is Oracle.

Major Issues of Concern

From a review of the tuning reports I have generated over the last couple of years I have come up with a list of 6 major areas that the DBA or tuning expert needs to pay attention to in an Oracle environment:

· Non-use of bind variables

· Improper Index usage

· Improper memory configuration

· Improper disk setup

· Improper initialization parameter usage

· Improper PGA setup

Each of the above areas can have a profound impact on the ability of an Oracle database to function properly. In the following sections we will cover how to measure the affect of these on your system, how to correct them once found and how to prevent them from being issues in the future. Each of the above can be, and probably is somewhere at this conference, a full hour topic, so we have a lot of ground to cover, let’s get started!

Non-Use of Bind Variables

You’ll hear it from PL/SQL tuners, you’ll hear from SQL tuners and you’ll hear from shared pool tuners, the biggest problem in many applications is the non-use of bind variables.

Why is this an issue? Well, Oracle uses a signature generation algorithm to assign a hash value to each SQL statement based on the characters in the SQL statement. Any change in a statement (generally speaking) will result in a new hash and thus Oracle assumes it is a new statement. Each new statement must be verified, parsed and have an execution plan generated and stored.

The activities needed to parse a statement and generate an execution plan are CPU intensive and generate recursive SQL against the data dictionary which may result in physical IO as well. The added statement and parse tree takes up space in the shared pool. I have seen several databases where the shared pool was over a gigabyte in size (one were it was 4 gig!) until bind variables were introduced, reducing the size to a couple of hundred megabytes at most.

A quick method of seeing whether code is being reused (a key indicator of proper bind variable usage) is to look at the values of reusable and non-reusable memory in the shared pool. A SQL for determining this comparison of reusable to non-reusable code is shown in figure 1.

ttitle 'Shared Pool Utilization'

spool sql_garbage
select 1 nopr,

to_char(a.inst_id) inst_id,

a.users users,

to_char(a.garbage,'9,999,999,999') garbage,

to_char(b.good,'9,999,999,999') good,

to_char((b.good/(b.good+a.garbage))*100,'9,999,999.999') good_percent

from (select

 a.inst_id,

 b.username users,

 sum(a.sharable_mem+a.persistent_mem) Garbage,

 to_number(null) good

from

 sys.gv_$sqlarea a,

 dba_users b

where

 (a.parsing_user_id = b.user_id and a.executions<=1)

group by a.inst_id, b.username

union

select distinct

 c.inst_id,

 b.username users,

 to_number(null) garbage,

 sum(c.sharable_mem+c.persistent_mem) Good

from

 dba_users b,

 sys.gv_$sqlarea c

where

 (b.user_id=c.parsing_user_id and c.executions>1)

group by c.inst_id, b.username

) a, (select

 a.inst_id,

 b.username users,

 sum(a.sharable_mem+a.persistent_mem) Garbage,

 to_number(null) good

from

 sys.gv_$sqlarea a,

 dba_users b

where

 (a.parsing_user_id = b.user_id and a.executions<=1)

group by a.inst_id,b.username

union

select distinct

 c.inst_id,

 b.username users,

 to_number(null) garbage,

 sum(c.sharable_mem+c.persistent_mem) Good

from

 dba_users b,

 sys.gv_$sqlarea c

where

 (b.user_id=c.parsing_user_id and c.executions>1)

group by c.inst_id, b.username

) b

where a.users=b.users

and a.inst_id=b.inst_id

and a.garbage is not null and b.good is not null

union

select 2 nopr,

'-------' inst_id,'-------------' users,'--------------' garbage,'--------------' good,

'--------------' good_percent from dual

union

select 3 nopr,

to_char(a.inst_id,'999999'),

to_char(count(a.users)) users,

to_char(sum(a.garbage),'9,999,999,999') garbage,

to_char(sum(b.good),'9,999,999,999') good,

to_char(((sum(b.good)/(sum(b.good)+sum(a.garbage)))*100),'9,999,999.999') good_percent

from (select

 a.inst_id,

 b.username users,

 sum(a.sharable_mem+a.persistent_mem) Garbage,

 to_number(null) good

from

 sys.gv_$sqlarea a,

 dba_users b

where

 (a.parsing_user_id = b.user_id and a.executions<=1)

group by a.inst_id,b.username

union

select distinct

 c.inst_id,

 b.username users,

 to_number(null) garbage,

 sum(c.sharable_mem+c.persistent_mem) Good

from

 dba_users b,

 sys.gv_$sqlarea c

where

 (b.user_id=c.parsing_user_id and c.executions>1)

group by c.inst_id,b.username

) a, (select

 a.inst_id,

 b.username users,

 sum(a.sharable_mem+a.persistent_mem) Garbage,

 to_number(null) good

from

 sys.gv_$sqlarea a,

 dba_users b

where

 (a.parsing_user_id = b.user_id and a.executions<=1)

group by a.inst_id,b.username

union

select distinct

 c.inst_id,

 b.username users,

 to_number(null) garbage,

 sum(c.sharable_mem+c.persistent_mem) Good

from

 dba_users b,

 sys.gv_$sqlarea c

where

 (b.user_id=c.parsing_user_id and c.executions>1)

group by c.inst_id, b.username

) b

where a.users=b.users

and a.inst_id=b.inst_id

and a.garbage is not null and b.good is not null

group by a.inst_id

order by 1,2 desc

/

spool off

ttitle off

set pages 22
Figure 1: SQL Code to Show Shared verses Non-shared code

An example report is shown in Figure 2 for an instance with poor code reuse characteristics. The names have been changed to protect the innocent.

Date: 03/25/05 Page: 1

Time: 17:51 PM Shared Pool Utilization SYSTEM

 whoville database

users Non-Shared SQL Shared SQL Percent Shared

-------------------- -------------- -------------- --------------

WHOAPP 532,097,982 1,775,745 .333

SYS 5,622,594 5,108,017 47.602

DBSNMP 678,616 219,775 24.463

SYSMAN 439,915 2,353,205 84.250

SYSTEM 425,586 20,674 4.633

------------- -------------- -------------- --------------

5 541,308,815 9,502,046 1.725

Figure 2: Example report output for poor code reuse

As you can see from Figure 2 the majority owner in this application, WHOAPP is only showing 0.3 percent of reusable code by memory usage and is tying up an amazing 530 megabytes with non-reusable code! Let’s look at a database with good reuse statistics. Look at Figure 3.

Date: 11/13/05 Page: 1

Time: 03:15 PM Shared Pool Utilization PERFSTAT

 dbaville database

users Non-Shared SQL Shared SQL Percent Shared

-------------------- -------------- -------------- --------------

DBAVILLAGE 9,601,173 81,949,581 89.513

PERFSTAT 2,652,827 199,868 7.006

DBASTAGER 1,168,137 35,468,687 96.812

SYS 76,037 5,119,125 98.536

------------- -------------- -------------- --------------

4 13,498,174 122,737,261 90.092

Figure 3: Example of Good Sharing of Code

Notice in Figure 3 how the two application owners, DBAVILLAGE and DBASTAGER show 89.513 and 96.812 reuse percentage by memory footprint for code.

So what else can we look at to see about code reusage, the above reports give us a gross indication, how about something with a bit more usability to correct the situation? The V$SQLAREA and V$SQLTEXT views give us the capability to look at the current code in the shared pool and determine if it is using, or not using bind variables. Look at Figure 4.

set lines 140 pages 55 verify off feedback off

col num_of_times heading 'Number|Of|Repeats'

col SQL heading 'SubString - &&chars Characters'

col username format a15 heading 'User'

@title132 'Similar SQL'

spool rep_out\&db\similar_sql&&chars

select b.username,substr(a.sql_text,1,&&chars) SQL, count(a.sql_text) num_of_times from v$sqlarea a, dba_users b

where a.parsing_user_id=b.user_id

group by b.username,substr(a.sql_text,1,&&chars) having count(a.sql_text)>&&num_repeats

order by count(a.sql_text) desc

/

spool off

undef chars

undef num_repeats

clear columns

set lines 80 pages 22 verify on feedback on

ttitle off

Figure 4: Similar SQL report code

Figure 4 shows a simple script to determine, based on the first x characters (input when the report is executed) the number of SQL statements that are identifical up to the first x characters. This shows us the repeating code in the database and helps us to track down the offending statements for correction. An example output from the similar_sql.sql script is shown in Figure 5.

Date: 02/23/05 Page: 1

Time: 10:20 AM Similar SQL SYSTEM

 whoville database

User SubString - 120 Characters

--------------- ---

 Number

 Of

 Repeats

WHOAPP SELECT Invoices."INVOICEKEY", Invoices."CLIENTKEY", Invoices."BUYSTATUS", Invoices."DEBTORKEY", Invoices."INPUTTRANSKEY"

 1752

WHOAPP SELECT DisputeCode.DisputeCode , DisputeCode.Disputed , InvDispute."ROWID" , DisputeCode."ROWID" FROM InvDispute , Disp

 458

WHOAPP SELECT Transactions.PostDate , Payments.PointsAmt , Payments.Type_ AS PmtType , Payments.Descr , Payments.FeeBasis , Pay

 449

SYS SELECT SUM(Payments.Amt) AS TotPmtAmt , SUM(Payments.FeeEscrow) AS TotFeeEscrow , SUM(Payments.RsvEscrow) AS TotRsvEscro

 428

WHOAPP SELECT SUM(Payments.Amt) AS TotPmtAmt, SUM(Payments.FeeEscrow) AS TotFeeEscrow, SUM(Payments.RsvEscrow) AS TotRsvEscrow

 428

WHOAPP SELECT Transactions.BatchNo , Payments.Amt , Payments."ROWID" , Transactions."ROWID" FROM Payments , Transactions WHERE

 396

WHOAPP INSERT INTO Payments (PaymentKey, AcctNo, Amt, ChargeAmt, Descr, FeeBasis, FeeEarned, FeeEscrow, FeeRate, FeeTaxAmt, Hol

 244

WHOAPP SELECT Clients.Name , Clients.ClientNo , Invoices.InvNo , Invoices.ClientKey AS InvClientKey , Transactions.ClientKey AS

 244

SYS SELECT COUNT(*) AS RecCount , INVOICES."ROWID" , TRANSACTIONS."ROWID" , PROGRAMS."ROWID" FROM INVOICES , TRANSACTIONS ,

 232

WHOAPP SELECT COUNT(*) AS RecCount FROM INVOICES, TRANSACTIONS, PROGRAMS WHERE INVOICES.BUYTRANSKEY = TRANSACTIONS.TRANSKEY (+)

 232

Figure 5: Example output from the similar_sql.sql report script.

As you can see from Figure 5, the SQL text is pinpointed that needs fixing. Using a substring from the above SQL the V$SQLTEXT view can be used to pull an entire listing of the code.

Some may be asking: “What is a bind variable?” simply put, a bind variable is a variable inserted into the SQL code in the place of literal values. For example:

SELECT * FROM whousers WHERE first_name=’ANNA’;

Is not using bind variables. If we issued a second query:

SELECT * FROM whousers WHERE first_name=’GRINCH’;

Even though the queries are identical until the last bit where we specify the name, the Oracle query engine would treat them as two different queries. By using bind variables, as shown below, we allow Oracle to parse the statement once and reuse it many times.

SELECT * FROM whousers WHERE first_name=:whoname;

The colon in front of the variable “whoname” tells Oracle this is a bind variable that will be supplied at run time.

So, the proper fix for non-bind variable usage is to re-write the application to use bind variables. This of course can be an expensive and time consuming process, but ultimately it provides the best fix for the problem. However, what if you can’t change the code? Maybe you have time, budget or vendor constraints that prevent you from being able to do the “proper” thing. What are your options?

Oracle has provided the CURSOR_SHARING initialization variable that will automatically replace the literals in your code with bind variables. The settings for CURSOR_SHARING are EXACT (the default), FORCE, and SIMILAR.

· EXACT – The statements have to match exactly to be reusable

· FORCE – Always replace literals

· SIMILAR – Perform literal peeking and replace when it makes sense

We usually suggest the use of the SIMILAR option for CURSOR_SHARING. You can tell if cursor sharing is set to FORCE or SIMILAR by either using the SHOW PARAMETER CURSOR_SHARING command or by looking at the code in the shared pool, if you see code that looks like so:

SELECT USERNAME FROM whousers WHERE first_name=:"SYS_B_0"

This tells you that CURSOR_SHARING is set to either FORCE or SIMILAR because of the replacement variable :”SYS_B_O”.

Improper Index Usage

In the good old days Oracle followed the rule based optimizer (RBO) and the rule based optimizer followed essentially one simple premise from which it’s rules were devised:

INDEXES GOOD! FULL TABLE SCANS BAD!

Unfortunately this simple rule basis led to many less than optimal execution plans so SQL tuners spent a lot of time doing things such as null value concatenation or 0/1 math (add zero, or multiple by 1) to eliminate index usage. Of course now we have the cost based optimizer (CBO) which always gives us the correct path…not!

In essence we now have to look for full table scans and examine the table size, available indexes and other factors to determine if the CBO has made the proper choice. In most cases where improper full table scans are occurring I have generally found that missing or improper indexes were the cause, not the optimizer.

Pre-9i determining full table scans was either done live by looking for full table scan related waits and backtracking to the objects showing the waits (as shown in Figure 6) or by periodically stripping the SQL from the V$SQLTEXT or V$SQLAREA views and performing explain plan commands on them into a table. The table was then searched for the plans that showed full table accesses. Neither of these were particularly user friendly.

rem fts_rep.sql

rem FUNCTION: Full table scan report

rem MRA

rem

col sid format 99999

col owner format a15

col segment_name format a30

col td new_value rep_date noprint

select to_char(sysdate,'ddmonyyhh24mi') td from dual;

@title80 'Full Table Scans &rep_date'

spool rep_out\&db\fts_rep_&rep_date

SELECT DISTINCT A.SID,

C.OWNER,

C.SEGMENT_NAME

FROM SYS.V_$SESSION_WAIT A,

SYS.V_$DATAFILE B,

SYS.DBA_EXTENTS C

WHERE A.P1 = B.FILE# AND

B.FILE# = C.FILE_ID AND

A.P2 BETWEEN C.BLOCK_ID AND

(C.BLOCK_ID + C.BLOCKS) AND

A.EVENT = 'db file scattered read';

spool off

ttitle off

Figure 6: Example Realtime report to obtain object undergoing full table scans

You will be happy to know that starting with Oracle9i there is a new view that keeps the explain plans for all current SQL in the shared pool, this view, appropriately named V$SQL_PLAN allows DBAs to determine exactly what statements are using full table scans and more importantly how often the particular SQL statements are being executed. An example report against the V$SQL_PLAN table is shown in Figure 7.

rem fts report

rem based on V$SQL_PLAN table

col operation format a15

col object_name format a32

col object_owner format a15

col options format a20

col executions format 999,999,999

set pages 55 lines 132 trims on

@title132 'Full Table/Index Scans'

spool rep_out\&&db\fts

select a.object_owner,a.object_name, rtrim(a.operation) operation, a.options, b.executions from v$sql_plan a, v$sqlarea b

where

a.address=b.address

and a.operation IN ('TABLE ACCESS','INDEX')

and a.options in ('FULL','FULL SCAN','FAST FULL SCAN','SKIP SCAN','SAMPLE FAST FULL SCAN')

and a.object_owner not in ('SYS','SYSTEM','PERFSTAT')

group by object_owner,object_name, operation, options

order by object_owner, operation, options, object_name

/

spool off

set pages 20

ttitle off
Figure 7: Example SQL to get full table scan data from database

Notice that I didn’t limit myself to just full table scans, I also looked for expensive index scans as well. An example excerpt from this report is shown in Figure 8.

Date: 11/09/04 Page: 1

Time: 08:31 PM Full Table/Index Scans PERFSTAT

 whoemail database

HASH_VALUE OWNER OBJECT_NAME OPERATION OPTIONS EXECUTIONS BYTES FTS_MEG

---------- ------ ------------------------- ------------- -------------- ---------- -------- -------

4278137387 SDM DB_STATUS TABLE ACCESS FULL 30,303 1048576 30303

1977943106 SDM DB_STATUS TABLE ACCESS FULL 1,863 1048576 1863

3391889070 SDM FORWARD_RECIPIENTS TABLE ACCESS FULL 29,785 4194304 119140

1309516963 SDM FORWARD_RECIPIENTS TABLE ACCESS FULL 3,454 4194304 13816

4017881007 SDM GLOBAL_SUPPRESSION_LIST TABLE ACCESS FULL 168,020 1048576 168020

3707567343 SDM ORGANIZATION2 TABLE ACCESS FULL 6,008 1048576 6008

1705069780 SDM SP_CAMPAIGN_MAILING TABLE ACCESS FULL 1,306 10485760 13060

1047433976 SDM SS_LAST_SENT_JOB TABLE ACCESS FULL 572,896 1048576 572896

3556187438 SDM SS_LAST_SENT_JOB TABLE ACCESS FULL 572,896 1048576 572896

3207589632 SDM SS_SEND TABLE ACCESS FULL 32,275 20971520 645500

 788044291 SDM SS_SENDJOBSTATUSTYPE_NNDX INDEX FAST FULL SCAN 25,655 20971520 513100

1417625610 SDM SS_SENDJOBSTATUSTYPE_NNDX INDEX FAST FULL SCAN 11,802 20971520 236040

2719565392 SDM SS_SENDJOBSTATUSTYPE_NNDX INDEX FAST FULL SCAN 11,379 20971520 227580

1533235337 SDM SS_SENDJOBSTATUSTYPE_NNDX INDEX FAST FULL SCAN 10,981 20971520 219620

3273441234 SDM SS_SENDJOBSTATUSTYPE_NNDX INDEX FAST FULL SCAN 10,594 20971520 211880

1823729862 SDM SS_TASK_OWNER_NNDX INDEX FULL SCAN 3,992 10485760 39920

3673286081 SDM SYSTEM_SEED_LIST TABLE ACCESS FULL 81,249 1048576 81249

 4712038 SDM TRACK_OPEN_MRRJ_LOCK_NNDX INDEX FULL SCAN 11,159 62914560 669540

3797121012 SDM TRACK_OPEN_MRRJ_LOCK_NNDX INDEX FULL SCAN 11,159 62914560 669540

1624438202 SDM TRACK_RAW_OPEN TABLE ACCESS FULL 29,786 31457280 893580

4232130615 SDM TRACK_RAW_OPEN TABLE ACCESS FULL 29,786 31457280 893580

3109457251 SDM TRACK_RAW_OPEN TABLE ACCESS FULL 29,785 31457280 893550

3391889070 SDM TRACK_RAW_OPEN TABLE ACCESS FULL 29,785 31457280 893550

1309516963 SDM TRACK_RAW_OPEN TABLE ACCESS FULL 3,454 31457280 103620

3685251647 SDM TR_M_TOP_DOMAINS TABLE ACCESS FULL 5,925 10485760 59250

2318926907 SDM TR_R_CLICKSTREAM TABLE ACCESS FULL 1,155 10485760 11550

 804017134 SDM TR_R_OPTOUT TABLE ACCESS FULL 2,375 10485760 23750

3707567343 SDM USER_INFO TABLE ACCESS FULL 6,008 10485760 60080

3328028760 SDM VIRTUAL_MTA_LOOKUP_PK INDEX FAST FULL SCAN 43,265 1048576 43265

1150816681 SDM VIRTUAL_MTA_LOOKUP_PK INDEX FAST FULL SCAN 20,193 1048576 20193

Figure 8: Example output from FTS Report.

Notice instead of trying to capture the full SQL statement I just grab the HASH value. I can then use the hash value to pull the interesting SQL statements using SQL similar to:

select sql_text from v$sqltext where hash_value=&hash

order by piece;
Once I see the SQL statement I use SQL similar to this to pull the table indexes:

set lines 132

col index_name form a30

col table_name form a30

col column_name format a30

select a.table_name,a.index_name,a.column_name,b.index_type

from dba_ind_columns a, dba_indexes b

where a.table_name =upper('&tab')

and a.table_name=b.table_name

and a.index_owner=b.owner

and a.index_name=b.index_name

order by a.table_name,a.index_name,a.column_position

/

set lines 80

Once I have both the SQL and the indexes for the full scanned table I can usually quickly come to a tuning decision if any additional indexes are needed or, if an existing index should be used. In some cases there is an existing index that could be used of the SQL where rewritten. In that case I will usually suggest the SQL be rewritten. An example extract from a SQL analysis of this type is shown in Figure 9.

SQL> @get_it

Enter value for hash: 605795936

SQL_TEXT

--

DELETE FROM BOUNCE WHERE UPDATED_TS < SYSDATE - 21

1 row selected.

SQL> @get_tab_ind

Enter value for tab: bounce

TABLE_NAME INDEX_NAME COLUMN_NAME INDEX_TYPE

------------ -------------------------- -------------- ----------

BOUNCE BOUNCE_MAILREPRECJOB_UNDX MAILING_ID NORMAL

BOUNCE BOUNCE_MAILREPRECJOB_UNDX RECIPIENT_ID NORMAL

BOUNCE BOUNCE_MAILREPRECJOB_UNDX JOB_ID NORMAL

BOUNCE BOUNCE_MAILREPRECJOB_UNDX REPORT_ID NORMAL

BOUNCE BOUNCE_PK MAILING_ID NORMAL

BOUNCE BOUNCE_PK RECIPIENT_ID NORMAL

BOUNCE BOUNCE_PK JOB_ID NORMAL

7 rows selected.
As you can see here there is no index on UPDATED_TS
SQL> @get_it

Enter value for hash: 3347592868

SQL_TEXT

--

SELECT VERSION_TS, CURRENT_MAJOR, CURRENT_MINOR, CURRENT_BUILD,

CURRENT_URL, MINIMUM_MAJOR, MINIMUM_MINOR, MINIMUM_BUILD, MINIMU

M_URL, INSTALL_RA_PATH, HELP_RA_PATH FROM CURRENT_CLIENT_VERSION

4 rows selected.

Here there is no WHERE clause, hence a FTS is required.

SQL> @get_it

Enter value for hash: 4278137387

SQL_TEXT

--

SELECT STATUS FROM DB_STATUS WHERE DB_NAME = 'ARCHIVE'

1 row selected.

SQL> @get_tab_ind

Enter value for tab: db_status

no rows selected

Yep, no indexes will cause a FTS everytime…

Figure 9: Example SQL Analysis

Of course even after you come up with a proposed index list you must thoroughly test them in a test environment as they may have other “side-effects” on other SQL statements, it would be a shame to improve the performance of one statement and shoot six others in the head.

Improper Memory Configuration

If you put too-small a carburetor on a car then even though the engine may be able to do 200 MPH, you are constraining it to much less performance. Likewise if you do not give enough memory to Oracle you will prevent it from reaching its full performance potential.

In this section we will discuss two major areas of memory, the database buffer area and the shared pool area. The PGA areas are discussed in a later section.

The Database Buffer Area

Just like the old adage you can’t fly anywhere unless you go through Atlanta, you aren’t going to get data unless you go through the buffer. Admittedly there are some direct-read scenarios, but for the most part anything that goes to users or gets into the database must go through the database buffers.

Gone are the days of a single buffer area (the default) now we have 2, 4, 8,, 16, 32 K buffer areas, keep and recycle buffer pools on top of the default area. Within these areas we have the consistent read, current read, free, exclusive current, and many other types of blocks that are used in Oracle’s multi-block consistency model.

The V$BH view (and it’s parent the X$BH table) are the major tools used by the DBA to track block usage, however, you may find that the data in the V$BH view can be misleading unless you also tie in block size data. Look at Figure 10.

rem vbh_status.sql

rem

rem Mike Ault -- Burleson

rem

col dt new_value td noprint

select to_char(sysdate,'ddmmyyyyhh24miss') dt from dual;

@title80 'Status of DB Block Buffers'

spool rep_out\&db\vbh_status&&td

select status,count(*) number_buffers from v$bh group by status;

spool off

ttitle off

clear columns

Figure 10: Simple V$BH Report

In the report in Figure 10 we see a simple version of a V$BH query. Figure 10 assumes only one buffer is in play, the default buffer, and doesn’t account for any of the multiple blocksize areas or the recycle or keep areas. By not accounting for other types of buffers that may be present the report in Figure 10 can overstate the number of free buffers available. Look at Figure 11.

Date: 12/13/05 Page: 1

Time: 10:38 PM Status of DB Block Buffers PERFSTAT

 whoville database

STATU NUMBER_BUFFERS

----- --------------

cr 33931

free 15829

xcur 371374

Figure 11: Simple V$BH report listing

From the results in Figure 11 we would conclude we had plenty of free buffers, however we would be mistaken. Look at the report in Figure 12.

Date: 12/13/05 Page: 1

Time: 10:39 PM All Buffers Status PERFSTAT

 whoville database

STATUS NUM

--------- ----------

32k cr 2930

32k xcur 29064

8k cr 1271

8k free 3

8k read 4

8k xcur 378747

free 10371
Figure 12: Detailed V$BH Status report

As you can see, while there are free buffers, only 3 of them are available to the 8k, default area and none are available to our 32K area. The free buffers are actually assigned to a keep or recycle pool area (hence the null value for the blocksize) and are not available for normal usage. The script to generate this report is shown in Figure 13.

set pages 50

@title80 'All Buffers Status'

spool rep_out\&&db\all_vbh_status

select

 '32k '||status as status,

 count(*) as num

from

 v$bh

where file# in(

 select file_id

 from dba_data_files

 where tablespace_name in (

 select tablespace_name

 from dba_tablespaces

 where block_size=32768))

group by '32k '||status

union

select

 '16k '||status as status,

 count(*) as num

from

 v$bh

where

 file# in(

 select file_id

 from dba_data_files

 where tablespace_name in (

 select tablespace_name

 from dba_tablespaces

 where block_size=16384))

group by '16k '||status

union

select

 '8k '||status as status,

 count(*) as num

from

 v$bh

where

 file# in(

 select file_id

 from dba_data_files

 where tablespace_name in (

 select tablespace_name

 from dba_tablespaces

 where block_size=8192))

group by '8k '||status

union

select

 '4k '||status as status,

 count(*) as num

from

 v$bh

where

 file# in(

 select file_id

 from dba_data_files

 where tablespace_name in (

 select tablespace_name

 from dba_tablespaces

 where block_size=4096))

group by '4k '||status

union

select

 '2k '||status as status,

 count(*) as num

from

 v$bh

where

 file# in(

 select file_id

 from dba_data_files

 where tablespace_name in (

 select tablespace_name

 from dba_tablespaces

 where block_size=2048))

group by '2k '||status

union

select

 status,

 count(*) as num

from

 v$bh

where status='free'

group by status

order by 1

/

spool off

ttitle off
Figure 13: Script to get all Buffer Pool Status

As you can see, the script is wee bit more complex than the simple V$BH script. No doubt there is a clever way to simplify the script using X and K$ tables, but then we would have to use the SYS user to run it and I prefer to use lower powered users when I go to client sites.

So, if you see buffer busy waits, db block waits and the like and you run the above report and see no free buffers it is probably a good bet you need to increase the number of available buffers for the area showing no free buffers. You should not immediately assume you need more buffers because of buffer busy waits as these can be caused by other problems such as row lock waits, itl waits and other issues.

Luckily Oracle10g has made it relatively simple to determine if we have these other types of waits. Look at Figure 14.

-- Crosstab of object and statistic for an owner

--

col "Object" format a20

set numwidth 12

set lines 132

set pages 50

@title132 'Object Wait Statistics'

spool rep_out\&&db\obj_stat_xtab

select * from(

select DECODE(GROUPING(a.object_name), 1, 'All Objects',

 a.object_name) AS "Object",

sum(case when a.statistic_name = 'ITL waits' then a.value else null end) "ITL Waits",

sum(case when a.statistic_name = 'buffer busy waits' then a.value else null end) "Buffer Busy Waits",

sum(case when a.statistic_name = 'row lock waits' then a.value else null end) "Row Lock Waits",

sum(case when a.statistic_name = 'physical reads' then a.value else null end) "Physical Reads",

sum(case when a.statistic_name = 'logical reads' then a.value else null end) "Logical Reads"

from v$segment_statistics a

where a.owner like upper('&owner')

group by rollup(a.object_name)) b

where (b."ITL Waits">0 or b."Buffer Busy Waits">0)

/

spool off

clear columns

ttitle off

Figure 14: Object Statistic Crosstab Report

Figure 14 shows an object statistic cross tab report based on the V$SEGMENT_STATISTICS view. The cross tab report generates a listing showing the statistics of concern as headers across the page rather than listings going down the page and summarizes them by object. This allows us to easily compare total buffer busy waits to the number of ITL or row lock waits. This ability to compare the ITL and row lock waits to buffer busy waits lets us see what objects may be experiencing contention for ITL lists, which may be experiencing excessive locking activity and through comparisons, which are highly contended for without the row lock or ITL waits. An example of the output of the report, edited for length, is shown in Figure 15.

Date: 12/09/05 Page: 1

Time: 07:17 PM Object Wait Statistics PERFSTAT

 whoville database

 ITL Buffer Busy Row Lock Physical Logical

Object Waits Waits Waits Reads Reads

-------------- ----- ----------- -------- ---------- -----------

BILLING 0 63636 38267 1316055 410219712

BILLING_INDX1 1 16510 55 151085 21776800

...

DELIVER_INDX1 1963 36096 32962 1952600 60809744

DELIVER_INDX2 88 16250 9029 18839481 342857488

DELIVER_PK 2676 99748 29293 15256214 416206384

DELIVER_INDX3 2856 104765 31710 8505812 467240320

...

All Objects 12613 20348859 1253057 1139977207 20947864752

243 rows selected.

Figure 15: Example Object Cross Tab Report

In the above report the BILLING_INDX1 index has a large number of buffer busy waits but we can’t account for them from the ITL or Row lock waits, this indicates that the index is being constantly read and the blocks then aged out of memory forcing waits as they are re-read for the next process. On the other hand, almost all of the buffer busy waits for the DELIVER_INDX1 index can be attributed to ITL and Row Lock waits.

In situations where there are large numbers of ITL waits we need to consider the increase of the INITRANS setting for the table to remove this source of contention. If the predominant wait is row lock waits then we need to determine if we are properly using locking and cursors in our application (for example, we may be over using the SELECT…FOR UPDATE type code.) If, on the other hand all the waits are un-accounted for buffer busy waits, then we need to consider increasing the amount of database block buffers we have in our SGA.

As you can see, this object wait cross tab report can be a powerful addition to our tuning arsenal.
By knowing how our buffers are being used and seeing exactly what waits are causing our buffer wait indications we can quickly determine if we need to tune objects or add buffers, making sizing buffer areas fairly easy.

But what about the Automatic Memory Manager in 10g? It is a powerful tool for DBAs with systems that have a predictable load profile, however if your system has rapid changes in user and memory loads then AMM is playing catch up and may deliver poor performance as a result. In the case of memory it may be better to hand the system too much rather than just enough, just in time (JIT). As many companies have found when trying the JIT methodology in their manufacturing environment it only works if things are easily predictable.

The AMM is utilized in 10g by setting two parameters, the SGA_MAX_SIZE and the SGA_TARGET. The Oracle memory manager will size the various buffer areas as needed within the range between base settings or SGA_TARGET and SGA_MAX_SIZE using the SGA_TARGET setting as an “optimal” and the SGA_MAX_SIZE as a maximum with the manual settings used in some cases as a minimum size for the specific memory component.

Improper Disk Setup

Under the heading of improper disk setup there are many sub topics. Some of these disk setup topics include:

· Interface issues

· Mount options

· Filesystem choices

· RAID setup

· Disk size and speed choices

Let’s look at each of these in the Oracle environment.

Interface Issues

Generally interface issues resolve to bandwidth issues. A case in point, a major bakery had upgraded their system, putting in more, faster CPUs, higher speed disks and newer hardware overall. They calculated on the average they only used 75% of the bandwidth on the old system so they reduced the number of HBAs from 12 dual-channel to 8 dual-channel.

After the upgrade performance looked great, until the end of month processing crunch, suddenly performance dropped to half of what it was before. Investigation showed that while on the average they only needed 75% of the bandwidth of the 12 HBAs during end of month, end of quarter and end of year processing they actually required more. Luckily for them the HBAs in the old system where compatible and, they had the needed expansion slots to add the needed HBAs to the new system. With the 4 additional HBAs in place they quadrupled their performance.

The other major choice in interfaces is in interface type, SCSI, Fibre, Fabric. Unfortunately there is no simple answer, you need to examine your system and if IO timing is bad, find out whether it is related to contention or bandwidth issues.

Note that when you monitor IO timing you need to look at it from Oracle’s perspective, that is, from the time Oracle requests the IO to the time the IO is received by the Oracle system, not strictly at the operating system level. If you see a large difference between what Oracle is saying IO timings are and what the OS is saying you need to track down where the time is being consumed between the disk packs and the Oracle database.

Mount Options

Essentially Oracle doesn’t like any mount option involving logging on its datafile mount points. Anything you can do to make the disk look RAW to Oracle is a good thing. This means nologging, noatime, async, aio and many other mount options need to be considered depending on your operating system. Dramatic improvements in performance have been reported from just changing the mount options on the drives otr filesystems that support your Oracle datafiles. Generally it is not advised to switch to nologging type options on filesystems where non-Oracle or binary type files (executables) are stored.

In UNIX you can control whether a file system uses buffered or unbuffered IO. With Oracle the use of a buffered filesystem is redundant and dangerous. An example of the dangers of a buffered filesystem with Oracle is when power is lost. The buffer in a buffered filesystem depends on the cache battery to provide enough power to allow the buffer to be written to disk before the disk spins down. However, many shops fail to monitor the cache battery lifetime limitations or fail to change the batteries at all. This can result in loss of data in a buffered filesystem on loss of power.
You can turn off buffered writes in several ways (buffered reads aren’t an issue, but you should always use write-through caching). One is to mount the filesystems used with Oracle files as non-buffered using such options as:
· AIX: “dio”, “rbrw”, “nointegrity”

· SUN: “delaylog”, “mincache=direct”, “convosync=direct” ,”nodatainlog”
· LINUX: “async”, “noatime”
· HP: Use VxFS with: “delaylog”, “nodatainlog”, “mincache=direct”, “convosync=direct”
Using Direct IO at the Oracle Level

For information about Oracle direct I/O, refer to this URL by Steve Adams:

* http://www.ixora.com.au/notes/filesystemio_options.htm
Checking Your Server
Methods for configuring the OS will vary depending on the operating system and file system in use. Here are some examples of quick checks that anyone can perform to ensure that you are using direct I/O:

· Solaris - Look for a "forcedirectio" option. Oracle DBAs find this option often makes a huge difference in I/O speed for Sun servers. Here is the Sun documentation: http://docs.sun.com/db/doc/816-0211/6m6nc6713?a=view
· AIX - Look for a "dio" option. Here is a great link for AIX direct I/O:

· http://www-106.ibm.com/developerworks/eserver/articles/DirectIO.html
· Veritas VxFS - (including HP-UX, Solaris and AIX), look for "convosync=direct". It is also possible to enable direct I/O on a per-file basis using Veritas QIO; refer to the "qiostat" command and corresponding man page for hints. For HPUX, see Oracle on HP-UX – Best Practices.
· Linux - Linux systems support direct I/O on a per-filehandle basis (which is much more flexible), and I believe Oracle enables this feature automatically. Someone should verify at what release Oracle started to support this feature (it is called O_DIRECT). See Kernel Asynchronous I/O (AIO) Support for Linux and this great OTN article: Talking Linux: OCFS Update.

I’m Using LINUX and ATA Arrays, no Stress, but IO is slow!

Don’t panic! Most LINUX kernels will take the default ATA interface setpoints that were the “standard” when the kernel was built (or even older ones). This can be corrected.

In LINUX there is the hdparm command which allows you to reset how ATA drives are accessed by the operating system. Using hdparm is simple and with it I have seen 300% improvement in access speeds of various ATA drives. Let’s go through a quick tuning sequence.
First, we will use the hdparm command with no arguments but the full path to the disk device listing:
[root@aultlinux2 root]# hdparm /dev/hdb

/dev/hdb:

 multcount = 16 (on)

 IO_support = 0 (default 16-bit)

 unmaskirq = 0 (off)

 using_dma = 0 (off)

 keepsettings = 0 (off)

 readonly = 0 (off)

 readahead = 8 (on)

 geometry = 77557/16/63, sectors = 78177792, start = 0

The hdparm with no arguments but the disk device gives the current settings for the disk drive. You should compare this to the specifications for your drive. You may find that direct emmory access (DMA) is not being used, readahead is too small, you are only using 16 bit when you should be using 32 bit, etc.

Next, let’s do a basic benchmark of the current performance of the drive, you do this using the hdparm –Tt option (for all options do a “man hdparm” at the command line.
[root@aultlinux2 root]# hdparm -Tt /dev/hdb

/dev/hdb:

Timing buffer-cache reads: 128 MB in 1.63 seconds = 78.53 MB/sec

Timing buffered disk reads: 64 MB in 14.20 seconds = 4.51 MB/sec

Now lets adjust the settings, the –c option, when set to 1 enables 32 bit IO, the –u option is used to get or set the interrupt-unmask flag for the drive. A setting of 1 permits the driver to unmask other interrupts during processing of a disk interrupt, which greatly improves Linux's responsiveness and eliminates "serial port overrun" errors. Use this feature with caution on older kernels: some drive/controller combinations do not tolerate the increased I/O latencies possible when this feature is enabled, resulting in massive filesystem corruption. However most versions of Linux (RedHat 2.1 and greater) using modern controllers don’t have this issue. The –p option is used to autoset the PIO mode and –d is used to set or unset the DMA mode.
[root@aultlinux2 root]# hdparm -c1 -u0 -p -d0 /dev/hdb

/dev/hdb:

 attempting to set PIO mode to 0

 setting 32-bit IO_support flag to 1

 setting unmaskirq to 0 (off)

 setting using_dma to 0 (off)

 IO_support = 1 (32-bit)

 unmaskirq = 0 (off)

 using_dma = 0 (off)

So we turned on 32 bit mode and set DMA to mode 0. Let’s see the resulting performance change using our previous –Tt option.
[root@aultlinux2 root]# hdparm -Tt /dev/hdb

/dev/hdb:

Timing buffer-cache reads: 128 MB in 1.63 seconds = 78.53 MB/sec

Timing buffered disk reads: 64 MB in 9.80 seconds = 6.53 MB/sec

So we didn’t change the buffer-cache read timings, however, we improved the buffered disk reads by 45%. Let’s tweak some more and see if we can do better. The –m option sets the multi-sector IO count on the drive. The –c option sets the 32 bit option, the –X sets the access mode to mdma2 the –d1 option turns on direct memory access, the –a8 option improves the readahead performance for large reads and –u1 turns on the unmasking operation described above.
 [root@aultlinux2 root]# hdparm -m16 -c3 -X mdma2 -d1 -a8 -u1 /dev/hdb

/dev/hdb:

 setting fs readahead to 8

 setting 32-bit IO_support flag to 3

 setting multcount to 16

 setting unmaskirq to 1 (on)

 setting using_dma to 1 (on)

 setting xfermode to 34 (multiword DMA mode2)

 multcount = 16 (on)

 IO_support = 3 (32-bit w/sync)

 unmaskirq = 1 (on)

 using_dma = 1 (on)

 readahead = 8 (on)

So now let’s see what we have done to performance using the –Tt option.
[root@aultlinux2 root]# hdparm -Tt /dev/hdb

/dev/hdb:

Timing buffer-cache reads: 128 MB in 1.56 seconds = 82.05 MB/sec

Timing buffered disk reads: 64 MB in 4.29 seconds = 14.92 MB/sec

Not bad! We improved buffered cache reads by 5% and buffered disk reads by 231%! These options can then be loaded into a startup file to make them part of the system startup.

I’m Really Feeling SCSI About Disk Performance, what then?
Sorry for the bad pun (well, actually I’m not) what can be done with SCSI interfaces? To tell you the truth, not a lot, however, there are some items which you may find useful. Most interfaces will buffer commands and issue them in batches, for example, most SCSI interfaces use a 32 command buffer that stacks commands until it has 32 of them and then fires them off. This can be reset in LINUX using options in the modules.conf file for the SCSI interface module.

In other UNIX flavors there are many settings which can be changed, but an exact understanding of the interface and its limitations as well as current system loads must be had before changing any of the SCSI settings. If you feel you need to have them checked, ask your SA.
Disk Stress In a Nut Shell
In summary, to determine if a disk or array is undergoing IO related stress, perform an IO balance and an IO timing analysis. If the IO timing analysis shows excessive read or write times investigate the causes. Generally speaking, poor IO timings will result when:

· A single disk exceeds 110 – 150 IO per second

· An entire multi-read capable RAID10 array exceeds #MIRRORS*#DPM*110 IO’s per second

· An entire non-multi-read capable RAID10 array exceeds #DPM*110 IO’s per second

· If a RAID5 array exceeds (#DISKS-1)*66 IO’s per second then it will probably experience poor IO timings.

· Make sure Oracle is using direct IO at both the OS and Oracle levels

· Make sure your disk interface is tuned to perform optimally

 *DPM=Disks per mirror
Seeing stress from the Oracle Side

Disk stress will show up on the Oracle side as excessive read or write times. Filesystem stress is shown by calculating the IO timings as shown in Figure 16.

rem Purpose: Calculate IO timing values for datafiles

col name format a65

col READTIM/PHYRDS heading 'Avg|Read Time' format 9,999.999

col WRITETIM/PHYWRTS heading 'Avg|Write Time' format 9,999.999

set lines 132 pages 45

start title132 'IO Timing Analysis'

spool rep_out\&db\io_time

select f.FILE# ,d.name,PHYRDS,PHYWRTS,READTIM/PHYRDS,WRITETIM/PHYWRTS

from v$filestat f, v$datafile d

where f.file#=d.file#

and phyrds>0 and phywrts>0

union

select a.FILE# ,b.name,PHYRDS,PHYWRTS,READTIM/PHYRDS,WRITETIM/PHYWRTS

from v$tempstat a, v$tempfile b

where a.file#=b.file#

and phyrds>0 and phywrts>0

order by 5 desc

/

spool off

ttitle off

clear col

Figure 16: IO Timing Report

An example of the output from Figure 16 is shown in Figure 17.
Date: 11/20/05 Page: 1

Time: 11:12 AM IO Timing Analysis PERFSTAT

 whoraw database

FILE# NAME PHYRDS PHYWRTS READTIM/PHYRDS WRITETIM/PHYWRTS

----- -------------- ---------- ------- -------------- ----------------

 13 /dev/raw/raw19 77751 102092 76.8958599 153.461829

 33 /dev/raw/raw35 32948 52764 65.7045041 89.5749375

 7 /dev/raw/raw90 245854 556242 57.0748615 76.1539869

 54 /dev/raw/raw84 208916 207539 54.5494409 115.610912

 40 /dev/raw/raw38 4743 27065 38.4469745 47.1722889

 15 /dev/raw/raw41 3850 7216 35.6272727 66.1534091

 12 /dev/raw/raw4 323691 481471 32.5510193 100.201424

 16 /dev/raw/raw50 10917 46483 31.9372538 74.5476626

 18 /dev/raw/raw24 3684 4909 30.8045603 71.7942554

 23 /dev/raw/raw58 63517 78160 29.8442779 84.4477866

 5 /dev/raw/raw91 102783 94639 29.1871516 87.8867909

Figure 17: Example IO Timing Report
As you can see from Figure 17 we are looking at an example report from a RAW configuration using single disks. Notice how both read and write times exceed even the rather large good practice limits of 10-20 milliseconds for a disk read. However in my experience for reads you should not exceed 5 milliseconds and usually with modern buffered reads, 1-2 milliseconds. Oracle is more tolerant for write delays since it uses a delayed write mechanism, so 10-20 milliseconds on writes will normally not cause significant Oracle waits, however, the smaller you can get read and write times, the better!
Filesystems

In UNIX or LINUX you have multiple filesystem options, RAW, JFS, ext2, ext3, reiserFS, OCFS. You need to use the best performing filesystem usually RAW, ext3 or resierFS. Oracle OCFS is also viable.

RAW Filesystems

RAW is probably the simplest filesystem to understand. In Unix systems, a disk can be configured to contain a single contiguous chunk of space, or it can be configured to contain multiple separate chunks of space. Each chunk of space is called a partition or section. Typically a partition would be formatted to contain a filesystem, allowing a hierchical structure of directories and files to be created. A partition that does not contain a filesystem is called a raw partition.. A database extent stored on a raw partition is called a raw extent.

Advantages

The primary advantage to using raw extents is the possibility of increased performance compared to extents stored in Unix files. The performance benefits occur because:

· File system overhead and address translation is eliminated. Database block addresses map directly to raw partition addresses.

· Read operations transfer data directly from the disk controller to shared memory and write operations transfer directly from shared memory to the disk controller. The Unix buffer pool is not used, avoiding the necessity to copy data from a Unix page buffer to shared memory and vice versa.

Disadvantages

Although they may provide increased performance, raw extents have several major disadvantages. You should not take the decision to use them lightly. Among the disadvantages are:

· Raw disk partitions are cumbersome to configure and manage. You have to keep track of what is on each raw partition yourself. You can easily make mistakes and destroy the contents of a raw partition.

· The number of raw partitions available on a disk may be quite limited. For example, on Solaris 2.5, a disk can have at most 8 partitions.

· Moving raw partitions from one disk to another may be difficult or impossible.

· Raw partition sizes are fixed. Allocating more space to a partition requires backing up all the partitions on a disk, designing a new partition layout, and restoring all saved data.

· You cannot use the same operating system backup utilities to make backups of files and raw partitions.

· You may get worse performance with raw devices than you do with files. The performance difference is highly dependent on the operating system's implementation of the file system. Many modern Unix systems, like Ditical Unix, AIX 4.2, HP-UX 10, Solaris 2.6, and others have highly advanced filesystem implementations that include many performance optimizations. Older Unix systems, such as Unix System V Release 4 are somewhat less advanced and raw partitions may provide better performance on these systems.

· You may not be able to use logical volume managers with raw partitions. Not all Unix systems support logical volumes composed of raw partitions.

The EXT2 Filesystem

The, Ext2fs is based on the Extfs code with many reorganizations and many improvements. It has been designed with evolution in mind and contains space for future improvements. The Second Extended File System has been designed and implemented to fix some problems present in the first Extended File System.

· The Ext2fs supports standard Unix file types: regular files, directories, device special files and symbolic links.

· Ext2fs is able to manage filesystems created on really big partitions. While the original kernel code restricted the maximal filesystem size to 2 GB, recent work in the VFS layer have raised this limit to 4 TB. Thus, it is now possible to use big disks without the need of creating many partitions.

· Ext2fs provides long file names. It uses variable length directory entries. The maximal file name size is 255 characters. This limit could be extended to 1012 if needed.

· Ext2fs reserves some blocks for the super user (root). Normally, 5% of the blocks are reserved. This allows the administrator to recover easily from situations where user processes fill up filesystems.

”Advanced” Ext2fs features

In addition to the standard Unix features, Ext2fs supports some extensions which are not usually present in Unix filesystems.

· File attributes allow the users to modify the kernel behavior when acting on a set of files. One can set attributes on a file or on a directory. In the later case, new files created in the directory inherit these attributes.

· BSD or System V Release 4 semantics can be selected at mount time.

· BSD-like synchronous updates can be used in Ext2fs.

· Ext2fs allows the administrator to choose the logical block size when creating the filesystem. Block sizes can typically be 1024, 2048 and 4096 bytes. Using big block sizes can speed up I/O since fewer I/O requests, and thus fewer disk head seeks, need to be done to access a file.

· Ext2fs implements fast symbolic links.

· Ext2fs keeps track of the filesystem state.

· Always skipping filesystem checks may sometimes be dangerous, so Ext2fs provides two ways to force checks at regular intervals. A mount counter is maintained in the superblock. Each time the filesystem is mounted in read/write mode, this counter is incremented. When it reaches a maximal value (also recorded in the superblock), the filesystem checker forces the check even if the filesystem is ``Clean''.

· Mount options can also be used to change the kernel error behavior.

· An attribute allows the users to request secure deletion on files. When such a file is deleted, random data is written in the disk blocks previously allocated to the file. This prevents malicious people from gaining access to the previous content of the file by using a disk editor.

· Last, new types of files inspired from the 4.4 BSD filesystem have recently been added to Ext2fs. Immutable files can only be read: nobody can write or delete them. This can be used to protect sensitive configuration files. Append-only files can be opened in write mode but data is always appended at the end of the file. Like immutable files, they cannot be deleted or renamed. This is especially useful for log files which can only grow.

EXT3 Filesystem

According to Dr. Stephan Tweety:

The ext3 filesystem is a journaling extension to the standard ext2 filesystem on Linux. Journaling results in massively reduced time spent recovering a filesystem after a crash, and is therefore in high demand in environments where high availability is important, not only to improve recovery times on single machines but also to allow a crashed machine's filesystem to be recovered on another machine when we have a cluster of nodes with a shared disk

… the real objective in EXT3 was this simple thing: availability. When something goes down in EXT3, we don't want to have to go through a fsck. We want to be able to reboot the machine instantly and have everything nice and consistent,,, You can take an existing EXT2 filesystem, throw a journal file onto it, and mount it as EXT3.

ReiserFS

According to Daniel Robbins (drobbins@gentoo.org), President/CEO:

The ReiserFS 3.6.x (the version included as part of Linux 2.4) was designed and developed by Hans Reiser and his team of developers at Namesys. The ReiserFS uses a specially optimized b* balanced tree (one per filesystem) to organize all of its filesystem data. This offers a nice performance boost, as well as easing artificial restrictions on filesystem layouts. It's now possible to have a directory that contains 100,000 other directories, for example. Another benefit of using a b*tree is that ReiserFS, like most other next-generation filesystems, dynamically allocates inodes as needed rather than creating a fixed set of inodes at filesystem creation time. This helps the filesystem to be more flexible to the various storage requirements that may be thrown at it, while at the same time allowing for some additional space-efficiency.

ReiserFS also has a host of features aimed specifically at improving small file performance. Unlike ext2, ReiserFS doesn't allocate storage space in fixed one k or four k blocks. Instead, it can allocate the exact size it needs. And ReiserFS also includes some special optimizations centered around tails, a name for files and end portions of files that are smaller than a filesystem block. In order to increase performance, ReiserFS is able to store files inside the b*tree leaf nodes themselves, rather than storing the data somewhere else on the disk and pointing to it.

This does two things. First, it dramatically increases small file performance. Since the file data and the stat_data (inode) information are stored right next to each other, they can normally be read with a single disk IO operation. Second, ReiserFS is able to pack the tails together, saving a lot of space. In fact, a ReiserFS filesystem with tail packing enabled (the default) can store six percent more data than the equivalent ext2 filesystem, which is amazing in itself.

However, tail packing does cause a slight performance hit since it forces ReiserFS to repack data as files are modified. For this reason, ReiserFS tail packing can be turned off, allowing the administrator to choose between good speed and space efficiency, or opt for even more speed at the cost of some storage capacity.

Other Filesystems

Of course we also have many other filesystems such as those from Veritas, Polyserver and other specialized systems.

Oracle and Filesystems

Generally Oracle prefers filesystems that don’t do logging or journaling for filesystems that contain datafiles so if you use EXT2, EXT3 or reiserFS you need to mount them with the journaling or logging off. If RAW filesystems are used you avoid some overhead but usually can only obtain a 2-5 percent performance increase over modern optimized filesystems.

RAID—Redundant Arrays of Inexpensive Disks

The main strengths of RAID technology are its dependability and IO bandwidth. For example, in a RAID5 array, the data is stored as are checksums and other information about the contents of each disk in the array. If one disk is lost, the others can use this stored information to re-create the lost data. However, this rebuild of data on-the-fly causes a massive hit on performance. In RAID 1, RAID 10 and RAID 01 failed disks are immediately replaced by their mirror with no performance hit. This makes RAID very attractive. RAID 5 has the same advantages as shadowing and striping at a lower cost. It has been suggested that if the manufacturers would use slightly more expensive disks (RASMED—redundant array of slightly more expensive disks) performance gains could be realized. A RAID system appears as one very large, reliable disk to the CPU. There are several levels of RAID to date:

· RAID 0. Known as disk striping.

· RAID 1. Known as disk shadowing or mirroring.

· RAID 0/1. Combination of RAID0 and RAID1. May also be called RAID 10 depending on whether they are striped and mirrored or mirrored then striped. It is generally felt that RAID 10 performs better than RAID 01.

· RAID 2. Data is distributed in extremely small increments across all disks and adds one or more disks that contain a Hamming code for redundancy. RAID 2 is not considered commercially viable due to the added disk requirements (10 to 20 percent must be added to allow for the Hamming disks).

· RAID 3. This also distributes data in small increments but adds only one parity disk. This results in good performance for large transfers, but small transfers show poor performance.

· RAID 4. In order to overcome the small transfer performance penalties in RAID3, RAID4 uses large data chunks distributed over several disks and a single parity disk. This results in a bottleneck at the parity disk. Due to this performance problem RAID 4 is not considered commercially viable. RAID 3 and 4 are usually are used for video streaming technology or large LOB storage.

· RAID 5. This solves the bottleneck by distributing the parity data across the disk array. The major problem is it requires several write operations to update parity data. The performance hit is only moderate, and the other benefits may outweigh this minor problem. However the penalty for writes can be over 20% and must be weighed against the benefits.

· RAID 6. This adds a second redundancy disk that contains error-correction codes. Read performance is good due to load balancing, but write performance suffers due to RAID 6 requiring more writes than RAID 5 for data update.

For the money, I would suggest RAID0/1 or RAID1/0, that is, striped and mirrored. It provides nearly all of the dependability of RAID5 and gives much better write performance. You will usually take at least a 20 percent write performance hit using RAID5. For read-only applications RAID5 is a good choice, but in high-transaction/high-performance environments the write penalties may be too high. Figure 18 shows RAID 1-0 or 0-1 depending on whether you stripe and then mirror or mirror first and then stripe. In most situations you get better performance from RAID 1-0 (mirroring then striping.)

[image: image1.wmf]Disk A

Disk B

Disk C

Disk D

Stripe 1

Stripe 1

Stripe 1

Stripe 1

Stripe 2

Stripe 2

Stripe 2

Stripe 2

Stripe 3

Stripe 3

Stripe 3

Stripe 3

Disk A

Disk B

Disk C

Disk D

Stripe 1

Stripe 1

Stripe 1

Stripe 1

Stripe 2

Stripe 2

Stripe 2

Stripe 2

Stripe 3

Stripe 3

Stripe 3

Stripe 3

Disk Group 1

Disk Group 2

Figure 18: Mirroring and Striping

Table 1 shows how Oracle suggests RAID should be used with Oracle database files.

	RAID
	Type of Raid
	Control File
	Database File
	Redo Log File
	Archive Log File

	0
	Striping
	Avoid
	OK
	Avoid
	Avoid

	1
	Shadowing
	Best
	OK
	Best
	Best

	0+1
	Striping and Shadowing
	OK
	Best
	Avoid
	Avoid

	3
	Striping with static parity
	OK
	OK
	Avoid
	Avoid

	5
	Striping with rotating parity
	OK
	Best if RAID0-1 not available
	Avoid
	Avoid

Table 1: RAID Recommendations (From Metalink NOTE: 45635.1)

Disk Speed and Size Selection

This all points to the fact that in order to get the maximum performance from your disk system you must understand the IO characteristics (the profile) of your database system, be it Oracle, SQL Server, Informix, UDB or MySQL. You must tune your disk architecture to support the expected IO profile and must tune the database system to take advantage of the disk architecture. For example, an Oracle database has different IO characteristics depending on whether it is reading or writing data and what type of read or write it is doing. Other databases have fixed read/write sizes.

You must determine the IO profile for your database and then use the IO profile of the database to determine the maximum and minimum IO size. The IO profile will tell you what percentage of IO is large IO and what percentage is small IO, it will also give you the expected IO rate in IO/second.

Once you have the IO per second you can determine the IO capacity (number of drives) needed to support your database.

The first rule of tuning your disk system is:

Size first for IO capacity, then for volume.

Some back of the envelope calculations for the number of spindles needed to support IO rate are:

RAID10 with active read/write to all mirrors:

MAX(CEILING(IOR/(NSIOR*M),M),2*M)

Where:

IOR is expected maximum IO rate in IO/sec

NSIOR is the average non-sequential IO rate of the disks in IO/sec (range of 90-100 for RAID10)

M is the number of mirrors

(The maximum of the IO rate divided by the average non-sequential IO rate per disk times the number of mirrors to the nearest power of M or 2*M)

RAID5 assuming 1 parity disk:

MAX((IOR/CNSIOR)+1,3)

Where:

· IOR is expected maximum IO rate in IO/sec

· CNSIOR is the corrected average non-sequential IO rate of the disks in IO/sec (range of 60-90 for RAID5)

(The maximum of the IO rate divided by the average non-sequential IO rate per disk corrected for RAID5 penalties plus 1 disk for the parity disk)

The correction for the non-sequential IO rate for RAID is due to the up to 400% penalty on writes (writes take 4 times linger than reads on the same drive). In some cases on RAID5 I have seen this go as high as 6400% (writes take 64 times as long as reads for the same file) when combined with other problems such as fragmentation.

A case in point, early RAID architectures utilized the "stripe shallow and wide" mind set where files where broken into small pieces and spread over a large number of disks. For example, stripe unites per disk of as small as 8K were common. Many systems read in IO sizes of 64K or larger. This means that to satisfy a single IO request 8 disks of the RAID set were required, if there were fewer than 8 disks in the set. Disks would have to undergo 2 or more IOs to satisfy the request. This sounds fine if you are talking about a single user wanting to read a large file from a large group of disks very quickly, however, what happens when you have 10 or 100 or 1000 concurrent users all wanting to do the same thing?

Tune for Concurrency

This problem with concurrent access and RAID arrays is one of the most prevailing in the industry. The ubiquitous IO wait is usually the predominant wait event in any database system simply due to the fact that IO to memory is in the nanosecond range while IO to disk is in the millisecond range, when you add in blocked access due to multi-disk IO requests you get a snowball effect that can cripple your IO subsystem.

Array manufacturers have begun to recognize this concurrent access problem and have increased the base stripe unit per disk to 64K, matching the IO unit for many systems. Of course now systems such as SUN and Windows utilize maximum IO sizes of 1 megabyte or larger, so again the array manufacturers are playing catch up to the server manufacturers.

So what is our second rule of tuning disks? Based on the above information the rule is:

Always ensure that the primary IO size for your database system is matched to the IO size of the disk array system.

Of course the inverse also holds true:

Always match the stripe unit per disk to the expected majority IO request from your (database) application.

In the 1990's Paul Chen of the University Of Berkeley computer center published a series of papers on tuning disk array stripe units size based on expected concurrency. In these papers by Mr. Chen and his associates they determined that the IO speed (as measured by average seek time) and IO rate (as measured in megabytes per second) for a disk determined the stripe size for performance in an array even when the number of concurrent accesses is not known. There were three formulae derived from these papers:

For non-RAID5 arrays when concurrency is known:

SU = (S*APT*DTR*(CON-1)*1.024)+.5K

Where:

· SU - Striping unit per disk

· S - Concurrency slope coefficient (~.25)

· APT - Average positioning time (milliseconds)

· DTR - Data transfer rate (Megabyte/sec)

· CON - number of concurrent users.

· 1.024= 1s/1000ms*1024K/1M (conversion factors for units)

So for a drive that has an average seek time of 5.6 ms and a transfer rate of 20 Mbyte/second the calculated stripe unit for a 20 concurrent user base would be:

(.25*5.6*20*(19)*1.024)+.5 = 545K (or ~512K)

For a system where you didn't know the concurrency the calculation becomes:

SU =(2/3*APT*DTR)

So for the same drive:

2/3*5.6*20*1.024 = 76.46K so rounding up ~128K or rounding down 64K

And from Chen's final paper, a formula for RAID5 arrays is:

0.5*5.6*20*1.024 = 57.34 (rounding up 64K)

The values for average access time and transfer rate used in these examples is actually fairly low when compared to more advanced drives so the stripe sizes shown above are probably low by at least a factor of 2 or more. I say this because while average seek times drop, the transfer rate increases for example on a Ultra3 SCSI 15K drive the spec for average seek may drop to 4.7 ms, however the transfer rate leaps to 70 Mbyte per second. So the over all value of the combined factor goes from 112 to 329, a 293% increase.

The 100% Myth

Many system administrators are guilty of perpetuating the 100% myth. This myth states that you don't need more assets (be it disk, CPU, or Memory) until the existing asset is 100% utilized. This leads to performance issues in the area of disks. Due to disk physics the best performance for a disk is at the outer edges, once you get towards the inner sectors performance decreases because of the distance the head must travel to read the data and other factors. In the good old days administrators spent much time positioning frequently used files on the outer edges of disks.

While physically positioning files on disks is difficult if not impossible in modern RAID systems, you should endeavor not to fill the disks to 100% of capacity. Some experts say don't use more then 30% if you want maximum performance, others 50%. I say it depends on how the system is used, the operating system and the RAID array system. For example the Clariion from EMC promises to tune the placement of files such that frequently used files are in the best locations.

So, what can we summarize about disk size and speed?

Get the fastest drives you can and plan capacity based on concurrency requirements as well as IO requirements. The more, faster disks the better.

Improper Initialization File Parameter Settings

For Oracle7, version 7.3, there are 154 initialization parameters, for Oracle8, version 8.0.5, there are 184. In Oracle8i there are 194. In Oracle9i version 9.0.1 there are 251 and in 9iR2, 257. In 10g the number of parameters actually dropped to 254 but the number of undocumented parameters increased. In 9iR2 the number of undocumented parameters was 583 up to 918 in 10gR1.

Fortunately there are very few that you need to adjust to tune Oracle. Table 2 lists the major tuning parameters, but is not supposed to be a complete list by any means.

	Parameter
	Definition

	create_bitmap_area_size
	This sets the memory area for bitmap creation

	bitmap_merge_area_size
	This is the memory area used for bitmap merge

	create_stored_outlines
	This allows Oracle to create stored outlines

	cursor_sharing
	This sets for automated literal replacement

	db_file_multiblock_read_count
	This sets the read size for full table and index scans

	filesystemio_options
	This is used to set direct or AIO options for filesystem reads

	optimizer_index_caching
	Used to tune index access

	optimizer_index_cost_adj
	Used to tune index access

	query_rewrite_enabled
	Sets for queries to be rewritten to use materialized views or FBIs

	query_rewrite_integrity
	Sets the criteria for when MVs are used.

	session_cached_cursors
	Sets the number of cached cursors at the session level

	sga_max_size
	Sets the maximum SGA memory size

	sga_target
	Sets the baseline SGA memory size

	star_transformation_enabled
	Allows Oracle to use star transformation

	transactions_per_rollback_segment
	Sets the number of transactions that will use a single rollback (undo) segment

	pga_aggregate_target
	Sets the total PGA memory usage limit

	workarea_size_policy
	Determines how workareas (sort and hash) are determined

	buffer_pool_keep
	Sets the size of the keep buffer pool for tables and indexes

	buffer_pool_recycle
	Sets the size of the recycle buffer pool for tables and indexes

	cursor_space_for_time
	Sacrifices memory for cursor storage space

	db_16k_cache_size
	Sets the size of the 16K cache size

	db_2k_cache_size
	Sets the size of the 2K cache size

	db_32k_cache_size
	Sets the size of the 32K cache size

	db_4k_cache_size
	Sets the size of the 4K cache size

	db_8k_cache_size
	Sets the size of the 8K cache size

	db_block_size
	Sets the default block size for the database

	db_cache_size
	Sets the default cache size

Table 2: Tuning Parameters

How to determine proper setpoints for all of these is beyond the scope of this paper. However the Oracle tuning guides provide many good tips as does the Burleson Consulting web site: www.remote-dba.net.

Improper PGA setup

I don’t believe there is anyone out there that believes disk based sorts and hashes are good things. A disk based operation will take anywhere from 17 to hundreds of times as long as a memory based operation depending on buffering, IO bandwidth, memory and disk speeds.

Oracle provides AWRRPT or statspack reports to track and show the number of sorts. Unfortunately hashes are not so easily tracked. Oracle tracks disk and memory sorts, number of sort rows and other sort related statistics. Hashes on the other hand only can be tracked usually by the execution plans for cumulative values, and by various views for live values.

In versions prior to 9i the individual areas were set using the sort_area_size and hash_area_size parameters, after 9i the parameter PGA_AGGREGATE_TARGET was provided to allow automated setting of the sort and hash areas. For currently active sorts or hashes the script in Figure 19 can be used to watch the growth of temporary areas.

column now format a14

column operation format a15

column dt new_value td noprint

set feedback off

select to_char(sysdate,'ddmonyyyyhh24miss') dt from dual;

set lines 132 pages 55

@title132 'Sorts and Hashes'

spool rep_out\&&db\sorts_hashes&&td

select sid,work_area_size,expected_size,actual_mem_used,max_mem_used,tempseg_size,
to_char(sysdate,'ddmonyyyyhh24miss') now, operation_type operation

from v$sql_workarea_active

/

spool off

clear columns

set lines 80 feedback on

ttitle off
Figure 19: Live Sorts and Hashes Report

Figure 20 shows an example output from this report.

Date: 01/04/06 Page: 1

Time: 01:27 PM Sorts and Hashes SYS

 whoville database
 Work Area Expected Actual Mem Max Mem Tempseg

SID Size Size Used Used Size Now Operation
---- --------- -------- ---------- ------- ------- --------------- ---------------

1176 6402048 6862848 0 0 04jan2006132711 GROUP BY (HASH)

 582 114688 114688 114688 114688 04jan2006132711 GROUP BY (SORT)

 568 5484544 5909504 333824 333824 04jan2006132711 GROUP BY (HASH)

1306 3469312 3581952 1223680 1223680 04jan2006132711 GROUP BY (HASH)

Figure 20: Example Sorts and hashes Report

As you can see the whoville database had no hashes, at the time the report was run, going to disk. We can also look at the cumulative statistics in the v$sysstat view for cumulative sort data.

Date: 12/09/05 Page: 1

Time: 03:36 PM Sorts Report PERFSTAT

 sd3p database

Type Sort Number Sorts

-------------------- --------------

sorts (memory) 17,213,802

sorts (disk) 230

sorts (rows) 3,268,041,228

Figure 21: Cumulative Sorts

Another key indicator that hashes are occurring are if there is excessive IO to the temporary tablespace yet there are few or no disk sorts.

The PGA_AGGREGATE_TARGET is the target total amount of space for all PGA memory areas. However, only 5% or a maximum of 200 megabytes can be assigned to any single process. The limit for PGA_AGGREGATE_TARGET is 4 gigabytes (supposedly) however you can increase the setting above this point. The 200 megabyte limit is set by the _pga_max_size undocumented parameter, this parameter can be reset but only under the guidance of Oracle support. But what size should PGA_AGGREGATE_TARGET be set? The AWRRPT report in 10g provides a sort histogram which can help in this decision. Figure 22 shows an example of this histogram.

PGA Aggr Target Histogram DB/Inst: OLS/ols Snaps: 73-74

-> Optimal Executions are purely in-memory operations

 Low High

Optimal Optimal Total Execs Optimal Execs 1-Pass Execs M-Pass Execs

------- ------- -------------- -------------- ------------ ------------

 2K 4K 1,283,085 1,283,085 0 0

 64K 128K 2,847 2,847 0 0

 128K 256K 1,611 1,611 0 0

 256K 512K 1,668 1,668 0 0

 512K 1024K 91,166 91,166 0 0

 1M 2M 690 690 0 0

 2M 4M 174 164 10 0

 4M 8M 18 12 6 0

 Figure 22: Sort Histogram

In this case we are seeing 1-pass executions indicating disk sorts are occurring with the maximum size being in the 4m to 8m range. For an 8m sort area the PGA_AGGREGATE_TARGET should be set at 320 megabytes (sorts get 0.5*(.05*PGA_AGGREGATE_TARGET)). For this system the setting was at 160 so 4 megabytes was the maximum sort size, as you can see we were seeing 1-pass sorts in the 2-4m range as well even at 160m.

By monitoring the realtime or live hashes and sorts and looking at the sort histograms from the AWRRPT reports you can get a very good idea of the needed PGA_AGGREGATE_TARGET setting. If you need larger than 200 megabyte sort areas you may need to get approval from Oracle support through the i-tar process to set the _pga_max_size parameter to greater than 200 megabytes.

Summary

This paper has presented the major tuning issues I have seen at many sites during tuning engagement. I have presented ways of determining if the issues exist and how to determine settings to help mitigate the issues in an active database.

6

_1135451629.vsd

