
Slide 1Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Cary Millsap
Hotsos Enterprises, Ltd.
Suncoast Oracle Users Group / Tampa, Florida
6:00pm–8:00pm Thursday 30 March 2006

Profiling Oracle: How it Works

Oracle. Performance. Now.

We can show you how to do
everything in this presentation.

Or we can do it for you.

Slide 3Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Agenda

• Introduction
• The role of profilers
• Profiling Oracle
• Case study
• Discussion

Slide 4Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

So there will be no confusion...

• This presentation does describe
– Why you use a profiler
– How you use profile data

• This presentation does not describe
– How to create a profile from raw trace data

• We can do that…
– But it takes more than an hour
– Visit www.hotsos.com for more information

Slide 5Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The role of profilers

Slide 6Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Performance analysis is the study of how long
something takes.

• Imagine…
– Q: “How long does it take to fly on AA from DFW to TPA?”
– A: “Mean fuel consumption in 2004 was F lbs/flight”

• This isn’t an answer!
– Wrong unit of measure
– Includes stuff you don’t want (LAX-SIN, HNL-OGG, …)
– Different aircraft types with different consumption rates

What you need is „How long does it take
to fly on AA from DFW to TPA?!‰

Slide 7Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

In Oracle, performance analysis has become the study
of just about everything but response time.

• From everyday life in Oracle…
– Q: “Why does P take so long?”
– A: “Here are your hit ratios, your utilization rates, …”

• How long? Why?
– You cannot tell from these reports

Oracle analysis tools are medieval compared to the tools and
methods that software developers use

Slide 8Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

A profiler is a tool that reports a useful decomposition of
a computer program’s response time.

• Nothing new
– Knuth described a FORTRAN profiler in 1971
– The GNU gprof profiler has been around since 1988
– …

• Profilers are indispensable application development tools
– Diagnosis
– Instruction
– Debugging

Slide 9Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Here’s how profiling fits into your life…

Pe
rfo

rm
an

ce
 a

na
ly

st
U

se
r

D
ev

el
op

er

Call
Call

count
Avg.

dur/call
read 22.719 69.6% 2,198 0.010
write (async) 3.248 9.9% 1,348 0.002
compute_line 1.864 5.7% 1,348 0.001
other 4.820 14.8%
Total 32.651 100.0%

Duration
(seconds)

Slide 10Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The simplest profile is the flat profile, which shows
response time decomposed by subroutine call.

$ gprof
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls us/call us/call name
60.37 0.49 0.49 62135400 0.01 0.01 step
39.63 0.82 0.33 499999 0.65 1.64 nseq

• Response time is 0.82 seconds
• 60.37% is consumed by 62,135,400 calls to step
• nseq takes longer per call, but contributes less total time
• …

Slide 11Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Another type of profile is the call graph, which shows
hierarchical interactions between subroutines.

Call graph (explanation follows)
…

index % time self children called name
0.33 0.49 499999/499999 main [2]

[1] 100.0 0.33 0.49 499999 nseq [1]
0.49 0.00 62135400/62135400 step [3]

<spontaneous>

[2] 100.0 0.00 0.82 main [2]
0.33 0.49 499999/499999 nseq [1]

0.49 0.00 62135400/62135400 nseq [1]

[3] 60.4 0.49 0.00 62135400 step [3]

Slide 12Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Profiling Oracle

Slide 13Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

You can use gprof on your code, but not Oracle’s.

• To use gprof
$ gcc -pg myprogram.c

$ a.out

$ gprof

• Works great for application code you’re writing
• The problem…

– You can’t compile oracle.c

Slide 14Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The Oracle kernel has a feature built in that allows you
to profile its internal operations as well.

• Extended SQL trace
– The event formerly known as “10046 level 12”
– Works great with versions 7, 8, and 9; even better in 10

• Gives you everything you need to create…
– Flat profile

• …by Oracle subroutine (timed syscalls ∪ dbcalls ∪ …)
• …by database call

– Call graph
• …by statement (SQL or PL/SQL)

– Lots more

This is a huge capability

Slide 15Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Version 10 example: Using extended SQL trace…

$ sqlplus
…
SQL> show parameter…
NAME TYPE VALUE
--------------------------- ----------- -------------------------------
timed_statistics boolean TRUE
max_dump_file_size string UNLIMITED
user_dump_dest string /u01/app/oracle/admin/v10/udump
…
SQL> exec dbms_monitor.session_trace_enable(null,null,true,true);
SQL> select 'hello' from dual;
SQL> exec dbms_monitor.session_trace_disable(null,null);
…

$ ls -lt $UDUMP
total 248
-rw-r----- 1 oracle oinstall 2396 Jan 17 11:18 v10_ora_5286.trc
…

Slide 16Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Version 9 example: Using extended SQL trace…

$ sqlplus
…
SQL> show parameter…
NAME TYPE VALUE
--------------------------- ----------- -------------------------------
timed_statistics boolean TRUE
max_dump_file_size string UNLIMITED
user_dump_dest string c:\Oracle\admin\v92\udump
…
SQL> exec dbms_support.start_trace(true,true);
SQL> select 'hello' from dual;
SQL> exec dbms_support.stop_trace;
…

$ ls –lt %udump%
total 44
-rw-rw-rw- 1 user group 4083 Jan 17 02:29 v92_ora_2272.trc
…

Slide 17Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The trace file contains everything you need to create a
flat profile by Oracle subroutine.

Oracle subroutine Duration (secs) # Calls Dur/call
----------------------------- ----------------- --------- -----------
SQL*Net message from client 984.010 49.6% 95,161 0.010340
SQL*Net more data from client 418.820 21.1% 3,345 0.125208
db file sequential read 279.340 14.1% 45,084 0.006196
CPU service, EXEC 136.880 6.9% 67,888 0.002016
CPU service, PARSE 74.490 3.8% 10,098 0.007377
CPU service, FETCH 37.320 1.9% 57,217 0.000652
unaccounted-for 27.720 1.4% 1 27.720000
latch free 23.690 1.2% 34,695 0.000683
log file sync 1.090 0.1% 506 0.002154
SQL*Net more data to client 0.830 0.0% 15,982 0.000052
log file switch completion 0.280 0.0% 3 0.093333
enqueue 0.250 0.0% 106 0.002358
…
----------------------------- ----------------- --------- -----------
Total response time 1,985.190 100.0%

Slide 18Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The trace file contains everything you need to create a
call graph by SQL or PL/SQL statement.

Duration of Duration incl.
Cursor statement self (secs) children (secs)
------------------------------------ ---------------- ---------------
/* REGULAR_PAY*/DECLARE LERMT VA… 6.620 0.3% 67.270 3.4%
| SELECT 'Y' FROM PAY_ELEMENT_ENTR… 35.020 1.8% 35.020 1.8%
| SELECT DECODE(COUNT(PRR.RUN_RESU… 14.740 0.7% 14.740 0.7%
| SELECT DECODE(COUNT(RRS.RUN_RESU… 9.090 0.5% 9.090 0.5%
| SELECT DECODE(NVL(TO_CHAR(PDS.AC… 1.110 0.1% 1.110 0.1%
| SELECT START_DATE,END_DATE FROM … 0.690 0.0% 0.690 0.0%
update pay_person_latest_balance… 66.650 3.4% 66.650 3.4%
select ASSBAL.defined_balance_id… 64.580 3.3% 64.580 3.3%
update pay_assignment_latest_bal… 61.140 3.1% 61.140 3.1%
select 1 into :b0 from sys.dual … 36.470 1.8% 36.470 1.8%
/* REGULAR_EARNINGS*/DECLAREL_ER… 8.080 0.4% 35.670 1.8%
| SELECT DECODE(COUNT(PRR.RUN_RESU… 26.280 1.3% 26.280 1.3%
…
------------------------------------ ---------------- ---------------
Total response time 1,985.190 100.0%

Slide 19Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Case study

Slide 20Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Baseline case: inserting is too slow.

• Each process inserts 5,000 rows
• 2 concurrent processes
• 1-CPU Windows XP
• Oracle 9.2.0.4
• Connection configuration

v92 =

(DESCRIPTION =

(ADDRESS_LIST =

(ADDRESS = (PROTOCOL = TCP)(HOST = CVM-LAP02)(PORT = 1521))

)

(CONNECT_DATA =

(SERVER = DEDICATED)

(SERVICE_NAME = v92.hotsos)

)

)

Slide 21Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Baseline response time profile…

v92_ora_2020.trc

Oracle subroutine Duration (secs) # Calls Dur/call
---------------------------- ----------------- --------- -----------
unaccounted-for 7.292 60.4% 10,255 0.000711
SQL*Net message from client 2.371 19.6% 20,007 0.000119
CPU service, PARSE calls 1.843 15.3% 5,040 0.000366
CPU service, EXEC calls 0.411 3.4% 5,061 0.000081
SQL*Net message to client 0.066 0.5% 20,007 0.000003
db file sequential read 0.055 0.5% 2 0.027650
log file sync 0.017 0.1% 3 0.005714
CPU service, FETCH calls 0.010 0.1% 152 0.000066
latch free 0.006 0.0% 19 0.000315
---------------------------- ----------------- --------- -----------
Total 12.071 100.0%

Slide 22Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Typical first questions about the profile…

• What is “unaccounted-for”?
• Isn’t SQL*Net message from client supposed to be “idle” time?
• Why does this thing parse almost 4.5× longer than it inserts?

If the point is to insert 5,000 rows, then why does inserting
consume only 3.5% of total response time?

Slide 23Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The call graph shows that almost all the time is
consumed by one statement.

Duration of Duration incl.
Cursor statement self (secs) children (secs)
-------------------------------------- ---------------- ---------------
insert into t values (1, lpad('1… 11.309 93.7% 11.392 94.4%
| select u.name,o.name, t.update$,… 0.063 0.5% 0.063 0.5%
| select file# from file$ where ts… 0.017 0.1% 0.017 0.1%
| update tsq$ set blocks=:3,maxblo… 0.002 0.0% 0.002 0.0%
[[synthetic parent]] 0.000 0.0% 0.582 4.8%
| select u.name, o.name, trigger$.… 0.472 3.9% 0.493 4.1%
| | select ts#,file#,block#,nvl(bobj… 0.015 0.1% 0.015 0.1%
| | select i.obj#,i.ts#,i.file#,i.bl… 0.002 0.0% 0.002 0.0%
| | select name,intcol#,segcol#,type… 0.002 0.0% 0.002 0.0%
| | select pos#,intcol#,col#,spare1,… 0.001 0.0% 0.001 0.0%
| | select type#,blocks,extents,mine… 0.001 0.0% 0.001 0.0%
| select order#,columns,types from… 0.002 0.0% 0.040 0.3%
… (35 other statements have been elided)
--------------------------------------- ------- ------ ------- ------
Total 12.071 100.0%

Slide 24Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The database call profile shows that the preponderance
of the response time is spent between db calls.

insert into t values (1, lpad('1',20))

Oracle hash value: 2581399381
Statement re-use: 5,000 similar but distinct texts

Response time: 11.309 seconds (93.7% of task total 12.071 seconds)

-----Duration (seconds)-----
Database call Elapsed CPU Other Calls Rows
-------------------- ------------- ----- ------ ------ -----
Between-calls 6.518 57.6% 0.000 6.518 0 0
PARSE 3.801 33.6% 1.843 1.958 5,000 0
EXEC 0.991 8.8% 0.411 0.580 5,000 5,000
-------------------- ------------- ----- ------ ------ -----
Total 11.309 100.0% 2.253 9.056 10,000 5,000
-------------------- ------------- ----- ------ ------ -----
Total per EXEC 0.002 0.0% 0.000 0.002 2 1
Total per row 0.002 0.0% 0.000 0.002 2 1

Slide 25Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The baseline program executed far too many parse
calls.

• Old code behavior…
for each row {

$sql = "insert into t values ($v1, lpad('$v2',20))";
$c = parse($sql);
exec($c);

}

• New code…
$c = parse("insert into t values (?, lpad(?,20))");

for each row {
exec($c, $v1, $v2);

}

The rewrite should eliminate 4,999 parse calls

Slide 26Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The results are spectacular (before).

v92_ora_2020.trc

Oracle subroutine Duration (secs) # Calls Dur/call
---------------------------- ----------------- --------- -----------
unaccounted-for 7.292 60.4% 10,255 0.000711
SQL*Net message from client 2.371 19.6% 20,007 0.000119
CPU service, PARSE calls 1.843 15.3% 5,040 0.000366
CPU service, EXEC calls 0.411 3.4% 5,061 0.000081
SQL*Net message to client 0.066 0.5% 20,007 0.000003
db file sequential read 0.055 0.5% 2 0.027650
log file sync 0.017 0.1% 3 0.005714
CPU service, FETCH calls 0.010 0.1% 152 0.000066
latch free 0.006 0.0% 19 0.000315
---------------------------- ----------------- --------- -----------
Total 12.071 100.0%

Slide 27Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

The results are spectacular (after).

v92_ora_2588.trc

Oracle subroutine Duration (secs) # Calls Dur/call
---------------------------- ----------------- --------- -----------
unaccounted-for 0.631 41.2% 5,032 0.000125
SQL*Net message from client 0.393 25.7% 5,010 0.000078
CPU service, PARSE calls 0.090 5.9% 11 0.008194
CPU service, EXEC calls 0.381 24.9% 5,011 0.000076
SQL*Net message to client 0.008 0.5% 5,010 0.000002

log file sync 0.027 1.8% 1 0.027396
CPU service, FETCH calls 0.000 0.0% 9 0.000002

---------------------------- ----------------- --------- -----------
Total 1.530 100.0%

Slide 28Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Why are the results so much better than we expected?

• Eliminating dbcalls has several better-than-linear positive effects
– We got the CPU service, PARSE estimate right
– Eliminating ~5,000 parse calls eliminated ~15,000 SQL*Net
message from client calls

– Preemption time decreased better than linearly!

Slide 29Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Eliminating unnecessary workload often result in better-
than-linear performance improvement.

• Eliminating work…
– Saves top-line response time
– Eliminates dependant work
– Reduces queue lengths

• Makes remaining calls faster
• Helps everyone

Eliminating unnecessary
work reverses exponential
performance degradation

Slide 30Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

Recap

• A profiler tells you exactly where a task’s time has gone
• Oracle emits everything you need to begin profiling
• Profilers give two capabilities you’re not accustomed to having

– “What happened?” becomes very easy
– “What if?” becomes very easy

• Once you have these capabilities,
itÊs hard to imagine life without them

Slide 31Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

References

Bentley, J. 1988. More Programming Pearls. Reading MA: Addison-Wesley.
This book provided the stimulus for one of the earliest prototypes of the Hotsos Profiler’s resource profile-based output format.

Dowd, K. 1993. High Performance Computing. Sebastopol CA: O’Reilly.
This is a good book for programmers who need to optimize the performance of their applications.

Gough, B. J. 2004. An Introduction to GCC—for the GNU compilers gcc and g++. Network Theory Ltd.
This is the source of the collatz.c GNU gprof example used in this presentation.

Hotsos Enterprises, Ltd. 2005. Hotsos Profiler at www.hotsos.com
The Hotsos Profiler meets all the profiling specifications described in this document.

Knuth, D. E. 1971. “Empirical study of FORTRAN programs” in Software—Practice and Experience, Apr/Jun 1971, Vol. 1, No. 2,
pp105–133.
This is the earliest reference to computer application profilers that I know of.

Millsap, C. 2003. “Oracle operational timing data” at www.hotsos.com.
This is a brief article outlining the operational timing features of the Oracle kernel.

Millsap, C.; Holt, J. 2003. Optimizing Oracle Performance. Sebastopol CA: O’Reilly.
This book provides a full description of Method R, a detailed reference for Oracle’s extended SQL trace facility, an introduction to
queueing theory for the Oracle practitioner, and a set of worked performance improvement example cases.

Millsap, C. 2004. “Diagnosing performance problems” in Oracle Magazine, Jan/Feb 2004, pp68–70.
This article provides insight into the motives and mechanics of extended SQL trace.

Millsap, C. 2004. “How to activate extended SQL trace” at www.hotsos.com.
This article provides details about the mechanics of activating extended SQL trace.

Nørgaard, M.; Ensor, D.; Gorman, T.; Hailey, K.; Kolk, A.; Lewis, J.; McDonald, C.; Millsap, C.; Morle, J.; Ruthven, D.; Vaidyanatha, G.
2004. Oracle Insights: Tales of the Oak Table. Berkeley CA: Apress.
I wrote Chapter 5 of this book, which details the history and evolution of Oracle’s extended SQL trace feature.

Oracle Corporation. Various technical resources:
DBMS_MONITOR package: http://download-west.oracle.com/docs/cd/B14117_01/appdev.101/b10802/d_monito.htm#ARPLS091.
DBMS_SUPPORT package: Oracle Metalink doc id Note:62294.1.
New version 10 OCI attributes: http://download-west.oracle.com/docs/cd/B14117_01/appdev.101/b10779/oci08sca.htm#452699

Slide 32Copyright © 1999–2006 by Hotsos Enterprises, Ltd.www.hotsos.com

A game…

• How would each problem show up in a profile?
1. Program parsed inside a loop
2. Program is efficient but can’t get enough CPU to run fast
3. SQL used an inefficient execution plan
4. Other program’s SQL used an inefficient execution plan
5. Table had too many extents
6. Disk subsystem was too busy
7. Client code path consumed too much time
8. Other program locked my table
9. Too many programs update same block
10.Shared pool was too small

