
September 26, 2005

Lewis Cunningham
Shepherd Systems

SQL Analytics

Lewis R Cunningham
Database Architect
Sheperd Systems

An Expert's Guide to Oracle
http://blogs.ittoolbox.com/oracle/guide

An expert is a person who has made all the mistakes that can
be made in a very narrow field. - Niels Bohr (1885 -

1962)

http://blogs.ittoolbox.com/oracle/guide

05/25/06Author: David Wong
3

Introduction to Oracle Analytic Introduction to Oracle Analytic
FunctionsFunctions
David Wong

September 26, 2005
4

Introduction Introduction
 Analytic functions were introduced in Release 2

of 8i and simplify greatly the means by which
pivot reports and OLAP queries can be computed
in straight, non-procedural SQL.

 Prior to the introduction of analytic functions,
complex reports could be produced in SQL by
complex self-joins, sub-queries and inline-views
but these were resource-intensive and very
inefficient.

September 26, 2005
5

Introduction Introduction
 Furthermore, if a question to be answered

was too complex, it could be written in
PL/SQL, which by its very nature is
usually less efficient than a single SQL
statement

September 26, 2005
6

Addresses These Problems Addresses These Problems
 Calculate a running total
 Top-N Queries
 Compute a moving average
 Rankings and percentiles
 Lag/lead analysis
 First/last analysis
 Linear regression statistics
 And more…

September 26, 2005
7

How Analytic Functions WorkHow Analytic Functions Work
 Analytic functions compute an aggregate

value based on a group of rows. They
differ from aggregate functions in that they
return multiple rows for each group.

 Analytic functions are the last set of
operations performed in a query except for
the final ORDER BY clause. Therefore,
analytic functions can appear only in the
select list or ORDER BY clause.

September 26, 2005
8

The SyntaxThe Syntax
 Analytic-Function(<Argument>,<Argument>,...)

OVER (
 <Query-Partition-Clause>
 <Order-By-Clause>
 <Windowing-Clause>
)

 Analytic-Function – AVG, CORR, COVAR_POP,
COVAR_SAMP, COUNT, CUME_DIST, DENSE_RANK, FIRST,
FIRST_VALUE, LAG, LAST, LAST_VALUE, LEAD, MAX, MIN,
NTILE, PERCENT_RANK, PERCENTILE_CONT,
PERCENTILE_DISC, RANK, RATIO_TO_REPORT, STDDEV,
STDDEV_POP, STDDEV_SAMP, SUM, VAR_POP, and more.

September 26, 2005
9

The SyntaxThe Syntax
 Query-Partition-Clause -Logically breaks a

single result set into N groups, according to the
criteria set by the partition expressions. The
words "partition" and "group" are used
synonymously here. The analytic functions are
applied to each group independently, they are
reset for each group

 Order-By-Clause - Specifies how the data is
sorted within each group (partition). This will
definitely affect the outcome of any analytic
function.

September 26, 2005
10

The SyntaxThe Syntax
 Windowing-Clause - The windowing

clause gives us a way to define a sliding or
anchored window of data, on which the
analytic function will operate, within a
group. This clause can be used to have the
analytic function compute its value based
on any arbitrary sliding or anchored
window within a group.

September 26, 2005
11

Running Total ExampleRunning Total Example

LAST_NAME DEPARTMENT_ID SALARY
Whalen 10 4400
Fay 20 6000
Hartstein 20 13000
Baida 30 2900
Colmenares 30 2500
Himuro 30 2600
Khoo 30 3100
Raphaely 30 11000
Tobias 30 2800

 Calculate a cumulative salary within a
department row by row

September 26, 2005
12

Running Total ExampleRunning Total Example
SELECT

last_name,
department_id,
salary,
SUM(salary) OVER

(PARTITION BY department_id
ORDER BY last_name) AS running_total

ROW_NUMBER() OVER
(PARTITION BY department_id
ORDER BY last_name) AS emp_sequence

FROM
employees

ORDER BY
department_id,
last_name;

September 26, 2005
13

Running Total ExampleRunning Total Example

LAST_NAME DEPARTMENT_ID SALARY RUNNING_TOTAL EMP_SEQUENCE
Whalen 10 4400 4400 1

Fay 20 6000 6000 1
Hartstein 20 13000 19000 2

Baida 30 2900 2900 1
Colmenares 30 2500 5400 2
Himuro 30 2600 8000 3
Khoo 30 3100 11100 4
Raphaely 30 11000 22100 5
Tobias 30 2800 24900 6

September 26, 2005
14

ROW_NUMBER functionROW_NUMBER function
 ROW_NUMBER is an analytic function. It

assigns a unique number to each row to
which it is applied (either each row in the
partition or each row returned by the
query), in the ordered sequence of rows
specified in the order_by_clause,
beginning with 1.

September 26, 2005
15

Top-N Query ExampleTop-N Query Example

 Find the top four paid sales rep by
department

LAST_NAME DEPARTMENT_ID SALARY
Ozer 80 11500
Errazuriz 80 12000
Partners 80 13500
Russell 80 14000
Cambrault 80 11000
Hunold 60 9000
Ernst 60 6000
Austin 60 4800
Pataballa 60 4800
Lorentz 60 4200

September 26, 2005
16

Top-N Query ExampleTop-N Query Example

SELECT
*

FROM
(

SELECT
department_id,
last_name,
salary,
ROW_NUMBER() OVER

(PARTITION BY department_id
ORDER BY salary DESC) AS top4

FROM
employees

)
WHERE

top4 <= 4

ROW_NUMBER SOLUTION

September 26, 2005
17

Top-N Query ExampleTop-N Query Example

LAST_NAME DEPARTMENT_ID SALARY TOP4
Hunold 60 9000 1
Ernst 60 6000 2
Austin 60 4800 3
Pataballa 60 4800 4

Russell 80 14000 1
Partners 80 13500 2
Errazuriz 80 12000 3
Ozer 80 11500 4

ROW_NUMBER SOLUTION

September 26, 2005
18

DENSE_RANK functionDENSE_RANK function
 DENSE_RANK computes the rank of a

row in an ordered group of rows. The
ranks are consecutive integers beginning
with 1. The largest rank value is the
number of unique values returned by the
query. Rank values are not skipped in the
event of ties. Rows with equal values for
the ranking criteria receive the same rank.

September 26, 2005
19

Top-N Query ExampleTop-N Query Example

SELECT
*

FROM
(

SELECT
department_id,
last_name,
salary,
DENSE_RANK() OVER

(PARTITION BY department_id
ORDER BY salary DESC) AS top4

FROM
employees

)
WHERE

top4 <= 4

DENSE_RANK SOLUTION

September 26, 2005
20

Top-N Query ExampleTop-N Query Example

DENSE_RANK SOLUTION
LAST_NAME DEPARTMENT_ID SALARY TOP4

Hunold 60 9000 1
Ernst 60 6000 2
Austin 60 4800 3
Pataballa 60 4800 3
Lorentz 60 4200 4

Russell 80 14000 1
Partners 80 13500 2
Errazuriz 80 12000 3
Ozer 80 11500 4

September 26, 2005
21

RANK functionRANK function
 RANK calculates the rank of a value in a

group of values. Rows with equal values
for the ranking criteria receive the same
rank. Oracle then adds the number of tied
rows to the tied rank to calculate the next
rank. Therefore, the ranks may not be
consecutive numbers.

September 26, 2005
22

Top-N Query ExampleTop-N Query Example

SELECT
*

FROM
(

SELECT
department_id,
last_name,
salary,
RANK() OVER

(PARTITION BY department_id
ORDER BY salary DESC) AS top4

FROM
employees

)
WHERE

top4 <= 4

RANK SOLUTION

September 26, 2005
23

Top-N Query ExampleTop-N Query Example

RANK SOLUTION
LAST_NAME DEPARTMENT_ID SALARY TOP4

Hunold 60 9000 1
Ernst 60 6000 2
Austin 60 4800 3
Pataballa 60 4800 3

Russell 80 14000 1
Partners 80 13500 2
Errazuriz 80 12000 3
Ozer 80 11500 4

September 26, 2005
24

First and Last RowsFirst and Last Rows
 The FIRST_VALUE and LAST_VALUE

functions allow you to select the first and
last rows from a group. These rows are
especially valuable because they are often
used as the baselines in calculations.

September 26, 2005
25

First Row ExampleFirst Row Example

 Find the employee with the lowest salary
in each department

LAST_NAME DEPARTMENT_ID SALARY
Hunold 60 9000
Ernst 60 6000
Austin 60 4800
Russell 80 14000
Partners 80 13500
Errazuriz 80 12000
Ozer 80 11500

September 26, 2005
26

First Row ExampleFirst Row Example

SELECT
department_id,
last_name,
salary,
FIRST_VALUE(last_name) OVER

(PARTITION BY department_id
ORDER BY salary ASC) AS min_sal

FROM
employees

September 26, 2005
27

First Row ExampleFirst Row Example

LAST_NAME DEPARTMENT_ID SALARY MIN_SAL
Hunold 60 9000 Austin
Ernst 60 6000 Austin
Austin 60 4800 Austin

Russell 80 14000 Ozer
Partners 80 13500 Ozer
Errazuriz 80 12000 Ozer
Ozer 80 11500 Ozer

September 26, 2005
28

Best Use for MeBest Use for Me
 I can use the result of a grouping

(aggregate) function within each record of
a group – much more flexible, much less
pain.

 I can perform relative ranking within a
group – it used to be tortuous with
“straight SQL”

 I can perform calculations in the SELECT
clause based on neighboring row values.

September 26, 2005
29

SummarySummary
 Analytic functions provide an easy

mechanism to compute resultsets that,
before 8i, were inefficient, impractical
and, in some cases, impossible in "straight
SQL".

 In addition to their flexibility and power,
they are also extremely efficient.

September 26, 2005
30

ConclusionConclusion
 This new set of functionality holds some

exciting possibilities. It opens up a whole
new way of looking at the data. It will
remove a lot of procedural code and
complex or inefficient queries that would
have taken a long time to develop.

 Add analytic functions to your SQL
arsenal and actively seek opportunities to
use them.

September 26, 2005
31

Where to Get More InformationWhere to Get More Information
 Oracle 9i Data Warehousing Guide – Oracle

documentation, technet.oracle.com, March 2002
 Oracle SQL Reference – Oracle documentation,

technet.oracle.com, October 2002

SQL Analytics

Lewis R Cunningham
Database Architect
Sheperd Systems

An Expert's Guide to Oracle
http://blogs.ittoolbox.com/oracle/guide

An expert is a person who has made all the mistakes that can
be made in a very narrow field. - Niels Bohr (1885 -

1962)

http://blogs.ittoolbox.com/oracle/guide

Monthly
4th Thursday
6pm – 8pm

IBM Center
Rocky Point

